
9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 34

Abstract—A component of a complete SCADA system used
to monitor and control industrial processes is represented by
an application which allow human – machine interaction. This
paper briefly describes special features, advantages, structure
and functional behavior of such as application. Data
acquisition software systems are not complete if they do not
offer the functionality to supervise and control online values.
Since the industrial process automation has passed the stage
when devices were working independent, without gathering
process’s parameters, a distributed system for data monitoring
and control (frequently used today) is composed of applications
which connect to devices, read and write data, and expose data
to other applications which allow interaction of the operator
with the industrial process. The main goals of such as
applications are: expose process’s parameters to the final user,
allow the process to be controlled by an user, to set control
rules, warn the user regarding alarms and events that need to
be acknowledged or only announced.

Index Terms—alarms and events, HMI, industrial

automation, Ole for Process Control, SCADA

I. INTRODUCTION
HMI applications have an important role in monitoring

and control industrial processes for the reason that they
create human – machine interface. As friendly and easy to
use this interface is, as easy the process will be supervised
and controlled [3]. The application’s functional behavior
which has to be prompted, accurate and customizable
depending on process’s properties, should not be omitted.

MCPI (Monitor and Control Industrial Processes) is a

HMI application which, as its name denotes, allows
interaction with industrial processes. This interaction is
achieved using an OPC data server, in order to create a
distributed system, or, if it is necessary, the application may
have an individual behavior in which the communication
with devices is made using some internal components
(drivers – ethernet, serial, USB).

II. FEATURES
MCPI represent a HMI application within a SCADA

system. In order to run, this application requires a Windows
operating system and it communicates with devices from the
industrial process using OPC data servers [2] or internal
drivers. MCPI was designed as an OPC client, but it is easily
adapted for other types of servers. The main roles are:

- continuous industrial process monitoring;
- process controlling by the human operator;

- automatic process controlling using block schemes;
- data acquisition from wide areas processes (by

connecting to data sources places in different points
of interest);

- databases creating with time evolution of a process.

MCPI has the following features:
- Graphical objects – there are an extensible library

with graphical objects, used to create a customized
interface;

- Alarms – alarms can be generated, filtered, shown
and printed;

- Security – various security levels can be set to
control the process and data viewing. Each user can
have his own security level;

- Data and event logging – real-time data acquired
from process and MCPI events can be stored. The
following user’s actions may be logged by MCPI:
windows closing, switches closing, parameters
modifying, etc. An event is stored on the disk with
the additional data: user name, date and time when
event was triggered, name of the object which
triggered the event, old and new value of the
object;

- OPC – MCPI is Ole For Process Control
compatible;

- Edit mode and Run Mode – application operates in
two modes: edit and run. Switching from one to
another is made by selecting a menu option or by
using a keyboard shortcut. Menus and application’s
tools are available depending on the current
operating mode and security level of the active
user.

III. SOLUTION ARCHITECTURE
The solution architecture consists of an ensemble of

objects, processes and connections. The user’s task is to
create, configure and connect objects between them. A
process is a group of independent or interconnected objects
between them, and the user creates processes to accomplish
certain tasks. The user can open and close processes without
affecting other running processes. The solution architecture
is presented in Figure 1.

IV. PROCESSING TRIGGERED BY EVENTS
The application run is totally conducted by events. A

MCPI – a HMI Application for Monitoring and
Controlling Industrial Processes

Vasile Gheorghiţă GĂITAN, Mihai Gabriel DĂNILĂ, Mihai Gavril ROBU, Nicoleta Cristina
GĂITAN

University “Stefan cel Mare” Suceava, GENPRO 07 SRL Suceava
Str. Universitatii13, RO-720229

bld.George Enescu nr.38, RO-720253 Suceava

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 35

certain sequence of code is executed only when one of the
input variables is changed. In order to save processor time
the looping execution of the code is avoided.

Figure 1. Solution architecture

Each object stays inactive until an event is triggered on

one of its connections. The object processes the value
according to its internal logics (given by the object type)
when an input signal is modified. The objects signal events
only when the processing result is changed. This application
approach will consume less processor time rather than a
solution based on a loop that waits for input signal to
change. A close to reality simulation is obtained and
therefore MCPI will run faster.

V. MCPI OBJECTS
The solution architecture is based on objects and

connections between objects. The user’s task is to create,
configure and connect objects between them. The objects
can be software representations of real components
(switches, relay, PLC). Each object encapsulates a specific
functionality. Each object has a set of parameters (based on
them the object can be defined and configured) and a set of
data members (considered input/output points). The
following diagram shows the functionality, the input/output
data and the object’s parameters:

Figure 2. Object structure

Object parameters define the object’s characteristics and
the possible functionality limits of the object. The
parameters are displayed in a dialog box particular for each
object. Examples of object parameters: communication
speed, high-high limit. Many parameters may contain an
expression, which means that one parameter containing an
expression will be re-evaluated when one of the operands is
modified. Some parameters for better flexibility, are doubled
as input/output data (can be read/written from outside the
object).

Each parameter will be identified by:

- unique name inside the object;
- data type (the type is encapsulated in the value,

which is an Object type variable);
- value – can represent a value or an expression

Data members contain information about the current state

of an object such as: value, text color displaying.
Input/output data represents the object communication
interface to the outside. Input/Output data aliases can be
created, but with another configuration (other filter
constants). Data member are defined by:

- name – an unique name. May be formatted as
following:

• unique name, any kind of name.
• a kind of name such as: „input 1 – input

50” which actually represents 50 data
members;

- data type – logical, numeric, text;
- access type – read or/and write;

The following things can be achieved using data members:

1. Creating connections with other objects. Only the
WRITE access type data members can be
connected. For such type of data member a READ
access type will be selected from the entire set of
objects created.

2. Certain data member characteristics modification.
Thus, for a specified data member can be defined
an alias (nickname) which is used to create
connections between objects. A scaling from one
interval to another and a deviation (it is used to
update or not the data member value) can be
defined for numeric values. Alarm conditions can
be defined for numeric and logical members, but
only for READ type access members.

Connections: Objects can be interconnected, allowing to

the signals to pass from one object to another. In this way
the data members from one object can be connected with
data members of another object.

Figure 3. Connections between objects

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 36

Each object must have a unique name in the process/folder
(each object will belong to one process/folder). The name of
the object is specified in properties window, where
parameters can be configured. There are a set of rules that
must be followed when a name is given to one object:

- the name can include the following characters: A –
Z, a – z, 0 – 9 and underscore (_);

- the name must begin with a letter,
- the name must have at most 32 characters;
- it should not contain space or tab character;
- the name mustn’t represent keyword of the

application (the name of objects or mathematical
functions). For example it cannot be used names
like switch, if, now, sin, cos, etc.

In the process, the objects can be grouped in folders, for a

good organization of them.
This sort of grouping permit to objects to have a unique

name at folder level and also permit a good organization of
process structure. The folders must have a unique name at
process level or at parent folder level, and the set of the rules
for names is the same like objects.

In this way can exist objects with the same name in the
process, but those objects must be in different folders.

Figure 4. Structure of folders and objects from process

VI. ALARMS AND EVENTS
An event can represent any modification in a MCPI

application. For example: modification of a potentiometer
value, reception of a message from serial port, window
opening or closing.

An alarm represents an abnormal state of work and must

be notified by operator. It can be defined alarm conditions
for objects and for data members. The alarms can be
filtered, displayed, stored and printed.

VII. DATA AND EVENTS STORAGE
Data storage: MCPI stores data in the moment when

value of a node is changing. The data is not logged at set
times. In this way it can be fallow the accurately evolution
of a parameter. Of course it can be establish filter constants
and dead zones to not burden the data base if it is not
necessary.

Events storage: It is useful if it is necessary to follow the

MCPI actions or modifications made by human operator. It
can be stored events like: events produce by objects, system
events (application closing), events produced by
modification of users (potentiometer adjust, etc). When an
event is stored the following items are also written: the

operator name, the data and time when the event was
produced, the name of the objects that was produced the
event, the old and the new value of the object. These
information are useful when a post damage analysis of
industrial process is required.

The access to the data from data base for visualization or
processing is made by a consulting module of logged data.
On data from history can be applied the following filters:
time filter (for example: it will be read the data from an
interval time), numeric filter (for example: it will be read the
data from an interval value), data logger type (data, alarms
or events).

The data from history can be exposed to the user in
graphics form or table form. Also, the data can be visualized
in raw form (like they are in the data base) or can be made
processing on them, like: average, sum, or complex
mathematical expressions (created by the user) [4]. The data
from history are followed by the time stamp. It can be
visualized the occurrence moment of alarms and events, if
the alarm is active or was confirmed, the type of
alarm/event, number of alarms/events in a time interval, etc.
If an alarm was acknowledged, the data base contains the
user that acknowledged it. These information will be
displayed in a table form.

VIII. COMMUNICATION WITH DEVICES
 The current application represents an HMI that assure a
friendly modality for human user to control and monitor the
industrial processes. Communication with process devices is
established by OPC data servers [1]. To connect to the
server, an OPC object that manages connection with data
server must be created within the application. If connection
with many servers is required, then many OPC objects will
be created.

The application architecture is based on objects and
connections between them. Therefore, an object can connect
to any other objects that belong to the same process as soon
as created. These objects may be graphic displays, control
objects that are used by a human operator to access process
values. The connection creation is shown bellow.

Figure 5. Connection to the OPC data server

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 37

This is the typical communication mode with real process

devices, but internal communication objects are created
when required (for serial communication, ethernet,
wireless).

IX. SECURITY
The client application has its own security system based

on users, group of users and passwords. A security level is
configured by default for each possible operation performed
by the application, but it is also possible to associate other
security levels for objects and application options. The
security level association can be made only by the
administrator.

A system security was necessary due to information and

commands received/transmitted within MCPI which have a
major importance for good industrial process controlled
work [4].

X. CONCLUSIONS
Due to internal structuring mode of the application and its
functionalities, it offers the following advantages:

- complete functional control of the monitoring
process;

- scalability;
- possibility to interconnect with different systems;
- event triggered processing. The code is not

executed until input data is modified. It results in
high execution speeds;

- after getting familiarized with the application, the
user can build a graphical interface in short time.
As the complexity of the process grows, the
friendly graphical interface allows better
understanding of the data acquired from process
not only by those familiarized but also by others.

REFERENCES
[1] OPC Foundation Specifications, www.opcfoundation.org
[2] Frank Iwanitz, Jurgen Lange, OPC Fundamentals, Implementation,

and Application 2nd rev. Ed., 2002
[3] Bela G. Liptak, Instrument Engineers’ Handbook: Process Software

and Digital Networks, 2002
[4] Lingfeng Wang, Kay CHen Tan, Modern Industrial Automation

Software Design, 2006

http://www.opcfoundation.org

