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Abstract—The importance of the harmonic analysis and its 
frequent utilization in different applications impose a complete 
accuracy. The conditions which provide a correct harmonic 
analysis are emphasized and analytically justified in this paper. 
By using an efficient algorithm, a virtual instrument for the 
harmonics analysis has been realised in LabVIEW by the 
authors. This program was a very useful and efficient tool in 
order to emphasize, from the practical point of view, all the 
errors analytically outlined. The translation of some superior 
harmonics to inferior order ones represents a possible and 
harmful phenomenon pointed out as well. 
 

Index Terms— LabVIEW, discrete for Fourier transform 

I. INTRODUCTION 
The main aim of a sampled wave harmonic analysis is the 

identification of both amplitude and phase for each 
harmonic up to an established maximum or possible order. 
The correct determination of the harmonics characteristics 
and of as many as possible harmonics is very important for 
the specificity of each end-user energy consumption, for the 
power quality assessment and for the perturbations 
emphasizing either produced by the end-users or by the 
power utility. 

The authors concern to apply the Virtual Instrumentation 
to the power quality assessment has led to the realization of 
some LabVIEW applications; among these ones, we can 
mention REGIDE.vi, used for the harmonics analysis. 

During the realization and the improvement of the 
mentioned program, based on the Discrete Fourier 
Transform (DFT), several traps have been pointed out. 

This paper is focused on the presentation of the possible 
errors and of the prevention methods of these ones by both 
the analytical demonstrations and the harmonics analysis 
program appliance. 

II. METHODOLOGICAL BASICS 

A. Fourier Development for Sampled Functions 
The numerical processing of the waves and the analogical 

- digital conversion have led to the voltages and currents 
signals scanning, according to the graphical representation 
from Figure 1 where the Yk samples are corresponding to 
the ya(t) values of the analyzed function at the tk moments. 
It can be noticed that the T period is divided in 2p equal 
parts, so that the tk moments are given by the relationship 

{ }1p2,0k,
p2
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Figure 1. Series of scans, during a period, according to the analyzed wave. 
 

and the correspondents Yk samples are  
Yk, k ∈{0, 1, 2, ..., (2p-1)}. (2) 
 

The Fourier coefficients are correctly calculated with the 
relationships 
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where Y0, representing the arithmetic mean of the Yk 

samples values from a period T, is called the continuous 
component of the analyzed wave. 

 The harmonic analysis of the scanned waves 
supposes the determination of the Fourier development 
corresponding to the expression 
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where x=2πt/T; the expression (6) emphasizes that only 

(p-1) harmonics can be correctly determined from the (2p) 
pairs of values (tk, Yk) and the relationships (3) and (4) 
point out the necessity that the first argument of the 
modulation functions, sin (Nkπ/p) and cos (Nkπ/p), has to 
be nul (the correct initial value of k is 0). 

 The Fourier development of a pulsing variable, 
corresponding to relationship (6), can be written in a more 
condensed form, as follows: 
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where the YN amplitude of a harmonic is 
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N
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B. Phase Identification 
For a correct determination of the ϕN phase of the N order 

harmonic, the following aspects have to be taken into 
account: 

 - the phase definition is included in relationship (7); 
 - the determined phases are ϕN ≥0, situated in the interval 

[0, 2π]; 
 - the ϕN calculus has sense only for YN ≠0; 
 - in the programming languages (LabVIEW, C, Pascal), 

arctg(x) takes values only in the interval (-π/2, +π/2). 
 Consequently, when calculating the phases φN the 

AN şi BN coefficients signs have to be taken into account in 
order to place the phases in the correct quadrant. Further on, 
the next algorithm of phases identification is proposed, 
being already verified using a realised programme [42]: 
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with the particular case of φN = 0, if in addition BN =0. In 

the relationships (10) şi (11), the notation NB  means the 

absolute value of BN. 
 It has to be remarked that the complete 

identification of a N order harmonic can be done either by 
the Fourier coefficients (AN, BN), or by the pair amplitude - 
phase (YN, ϕN). 

III. ASPECTS OF DFT CORRECT APPLICATION 

A. The Amplitude Invariance and the Phase Error 
 In order to realize the analytical motivation of the 

values range of the addition index, the N order harmonic is 
taken into consideration written in the general form  

( )NNN NxsinY)x(y ϕ−⋅= , (12) 
 

as it appears in relationship (7), for which 2p scans are 
known on the interval x∈[0, 2π) and having the values 
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the last notation specifies that the natural number k takes 

values from 1 to 2p. 
The calculus of the Fourier coefficients for the considered 

harmonic is also made with the relationships (3) and (4) 
with the difference that the addition index is p2,1k =  (like 

in some references) and not )1p2(,0k −=  as it appears in 
the referred relationships. 

 The initial expressions of the calculus relationships 
are: 
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using elementary transformations and formula such as 
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we obtain the expressions 
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 First of all, owing to relationship (8), it can be 

remarked the amplitude value Yk invariance, which is not 
depending on the addition index k interval, if this one takes 
2p distinct values.  

 Secondly, it can be noticed that even the same 
series of values like in the relationships (14) and (15) is 
described through the way of yNk samples generation (rel. 
13), the phase calculated is greater than the ϕN phase with 

p
N

N
π

=ϕ∆ , (20) 

 
which is representing a phase calculus error, depending 

on the p number, being inverse proportional with it. The 
explanation of the phase error appearance comes from the 
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series of values of the modulation functions )
p

Nksin( π  and 

)
p

Nkcos( π , distinct in the case when p2,1k =  than in the 

)1p2(,0k −=  case. 
In conclusion, the phase error does not appear if the 

relationships (3) and (4) are used for the harmonics 
identification. If, for the same goal, we use the relationships 
(14) and (15) then the phase correction is imposed, with the 
quantity given by (20), the correct phase being 
 

NN
'
N ϕ∆−ϕ=ϕ , (21) 

 
where ϕN represents the phase determined from the AN 

and BN coefficients, calculated with the relationships (18) 
respectively (19). 

The phase error influence is emphasized in Figure 2, for a 
non-sinusoidal pulsing variable YA, with a known harmonic 
composition; the samples determined for a big enough 
number of divisions (2p) have been introduced in the 
calculus in order that all the harmonics may be identifiable. 

 

 
 

Figure 2. The waves corresponding to the real, analyzed function YA  and 
reconstituted one Y, using the Fourier analysis. 

The harmonic analysis based on relationships as (14) and 
(15) and the Y wave reconstitution from the identified 
harmonics, lead to a lagging behind of the reconstituted 
wave Y versus the analyzed one YA. By correcting the 
harmonics phases according to relation (21), the 
reconstituted wave is superposing the analyzed one. 

B. Harmonics Maximum Order 
The divisions number (2p) is important, first of all, for the 

maximum order of the harmonic that can be correctly 
determined which is 
Nmax = p-1, (22) 
 

contrary to the opinion that p harmonics can be 
determined. The first argument is that from the (2p) initial 
conditions (the abscise-ordinate correspondences) the 
continuous component and 2(p-1) coefficients for (p-1) 
harmonics are determined, so totally (2p-1) data, meanwhile 
for p harmonics have to be calculated (2p+1) data, the initial 
conditions being insufficient. The relationship (2) 

emphasizes the idea to reconstitute the wave only from (p-1) 
harmonics, correctly determinable and from the continuous 
component, when this one exists. 

According to the Shannon sampling theorem, the 
scanning of a non-sinusoidal, periodical signal has to be 
done with a frequency fe at least two times greater than the 
frequency fmax of the maximum order harmonic that will be 
emphasized after the spectral analysis of the signal: 

 
maxe f2f ≥ . (23) 

 
The frequency representing half of the sampling frequency 

(fe/2) is called Nyquist frequency [3], having the order p. 
If the maximum frequency related to the fundamental 

frequency 
 

lmaxmax fNf = , (24) 
 
is introduced in the relationship (23), a form of the Shannon 
theorem will be obtained, indicating the maximum order of 
the harmonic correctly determinable for the sampled wave, 
as 
 

pNmax ≤ . (25) 
 

The sign ″=”, allowed by the relationship (25) is 
disputable, regarding the number of the existing distinct 
conditions. 

For the moment, it can be presumed that just (p-1) 
harmonics can be determined, so 2(p-1) data. If the 
continuous component is added, it means that just (2p-1) 
conditions have been taken into account, one of them 
remaining available. It can be admitted that this condition 
may offer a clue about the p order harmonic, but it will not 
permit a complete identification of this one. 

For the analytically study of the particular identification 
of the Nyquist frequency harmonic, the Fourier coefficients, 
given by the relationships (3) and (4), are calculated for 
N=p. The following series of samples is considered 
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with 1p2,0k −= , for which the Fourier coefficients are 
resulting as follows: 
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showing that only Bp ≠ 0 (Ap=0), for the { }π∉ϕ ,0p  case, 

but neither the amplitude nor the phase cannot be calculated. 
Moreover, it can be noticed that the Bp coefficient (rel. 28) 
is two times greater than the correct value (rel 19 with the 
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phase correction already introduced). 
In conclusion, the Nyquist frequency harmonic is not 

determinable, being possible utmost to point out that it 
exists, if casually its phase is different from zero or π. 

C. Translation of the Undetectable Harmonics 
A special aspect, detected with an original program called 

REGIDE, is represented by the identification as an inferior 
order harmonic K < p of a harmonic that has in reality the M 
order, greater than the detectable limit M > p. The results of 
the program successive processing, with a variable number 
of samples on a semi-period, in order to identify the wave 
yA= 5sin (17x+π/3), is presented in Table 1 

TABLE I.  IDENTIFICATION OF A GIVEN ORDER HARMONIC (N=17) 
VERSUS THE SAMPLES NUMBER ON A PERIOD 

Samples 
nr / semi-

period 
NP=p 

Identifiable 
harmonic 
order (K) 

Amplitude 
(C) 

Observations 

10 3 

11 5 

12 7 

13 9 

14 11 

15 13 

16 15 

5,00 

 
 
 
 

Incorrect harmonic 
order, amplitude 
correctly 
determined. 

 
17 

 
17 

 
8,66 

Order correctly 
identified, incorrect 
amplitude. 

≥ 18 17 5,00 Correct 
identification. 

 
It can be noticed that even the analyzed wave presents the 

17 order harmonic, this one is identified to be as inferior 
orders K ∈ {3, 5, ... ,15} when the number of samples on a 
semi-period takes respectively the values p ∈ {10, 11, ... 
,16}. The amplitude is however correctly identified. 

On the other hand, the amplitude is incorrectly identified 
when the harmonic order is equal to the number of samples / 
semi-period (N=p), that confirms one of the previous 
observations. 

Finally, for p≥18>N=17, the identification is correctly 
realized. 

The identification phenomenon of a superior undetectable 
harmonic (“invisible”), as an inferior harmonic was called 
the undetectable harmonics translation. This was also 
emphasized for a wave with a more complex harmonic 
composition, when the translation phenomenon of an 
undetectable harmonic is accompanied by the combination 
of the translated wave with the inferior order harmonic 
(K<p), which is really existing in the analyzed wave. 

The analytical justification of the alias appearance 
possibility and of its behavior is based on the consideration 
of the samples series of an M>p order harmonic, as 

,1p2,0k,
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kMsinYY MMMk −=
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for which the problem is if it may appear, after a discrete 
Fourier analysis, as an N order harmonic. Therefore, the 
Fourier coefficients AN and BN are calculated with the 
known relationships (3) and (4), but for the samples series 
given by (29).  

Even it is known that the AN şi BN coefficients are null for 
an harmonic with the order M≠N and M<N, the particular 
cases when the coefficients are not null are searched. After 
elementary transformations, we obtain the coefficients as 
follows: 
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Using transformations in accordance with (16) and (17), 

the following sums are resulting null for certain integer 
numbers J, not divisible by p: 
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so that AN şi BN are null for the M< N case inclusively. 
But if M> N and (2p)|(M ± N), the Fourier coefficients, 

according to (30) and (31), may have one of the following 
aspects: 

- if (2p)|(M-N), i.e. (M-N) is divisible by (2p), 
 

;sinYB;cosYA MMNMMN ϕ=ϕ=  (33) 
 
- if (2p)|(M+N), 
 

,sinYB;cosYA MMNMMN ϕ−=ϕ−=  (34) 
 
confirming from the analytical point of view the alias 

effect possibility [52]. 
The condition that a M>p order harmonic appears as a 

harmonic of N<p order, when (2p) samples are used on a 
period of the analyzed wave, is analytical expressed by the 
relationship 

 
(2p) | (M ± N), (35) 

that is the integer number (M ± N) can be divided by (2p). 
A relationship for the determination of the apparent 

frequency (alias) fNA has been proposed in [6] as the absolute 
value of the difference between the smallest multiple of the 
sampling frequency and the real frequency of the respective 
harmonic: 
 

(30) 

(31) 
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MeminNA ffKf −= , (36) 
 

where fe represents the sampling frequency, 
 fM - the real frequency of the M order harmonic; 
 Kmin - the smallest (closest) integer number that 

leads to the equality fulfillment.  
 It comes out that the relationships (35) and (36) are 

equivalent. 
 Owing the undetectable harmonics translation 

phenomenon the DFT correctness of a samples series is 
questionable. The analysis correctness providing can be 
made in accordance with the next two methods, succeeding 
the proposed algorithms, as follows: 

 - sampling at an increased frequency in order to chose 
from the complete series of values sub-series with different 
numbers of values. The differences between the harmonic 
analysis of two different sub-series could emphasize the 
existence of some undetectable harmonics in the studied 
wave composition and the results identity would confirm the 
determination justness. In the cases when differences occur 
at the amplitudes of some harmonics, it means that 
translated superior harmonics exist and their order can be 
determined with relationships as (35) or (36); 

 - generating, according to the acquired samples series 
and an interpolation method, of some series of values with 
different number of samples and applying the harmonic 
analysis for each one of these series with the results 
comparison and consequences as presented bellow. 

 However, from the practical point of view is more 
efficient and convenient if, before accessing the data 
acquisition card, the signals would cross a low-pass filter in 
order to limit the maximum frequency of the signals that 
have to be then acquired, so analyzed. 
 

IV. REQUIREMENTS FOR DEDICATED PROGRAMS 
 The main requirements for an accurate and useful 

harmonic analysis are the following:  
 - the correct identification of the amplitudes and phases 

of all harmonics from the analyzed wave; 
 - neglecting the harmonics with insignificant amplitudes, 

being situated in the error range of the determination 
method; 

 - the reconstitution of the wave from the identified 
harmonics, the comparison with the wave that has to be 
analyzed and the determination of the square mean error 
between them; 

 - the possibility of adjusting the equipment (feasible 
using the Virtual Instrumentation) for waves with known 
harmonics compositions; 

 - emphasizing the situations when superior harmonics 
from the analyzed wave are not determined; 

 - performing the calculus in a period of time as short as 
possible in order to use the results in quasi-real time (after 
utmost a period from the acquisition end). 

 Beside the harmonic analysis of the signals or of 
some voltages and currents waves, the problem that appears 
is to emphasize the fast variations (fluctuations) or the slow 
ones of the voltage from a discrete values series of its 
effective value. 

V. FINAL CONCLUSIONS 
The harmonics limitation requires a relevant harmonic 

analysis of the sampled waves according to DAQ methods. 
Using both the analytical methods and the CAD analysis, 
the following recommendations have been established: 

 - from (2p) samples of the analyzed wave only (p-1) 
harmonics, defined each one by amplitude and phase, can be 
determined; 

 - the correct determination of the harmonics phases is as 
much important as the amplitude determination, fact that 
allows the wave reconstitution from its components; 

 - utilizing the addition index value from the {0, 2p-1} 
interval, leads to the correct calculus of the harmonics 
coefficients and phases; 

 - the harmonics amplitude determination is invariant 
versus the summing index limits if this one takes (2p) 
values; 

 - the Nyquist frequency harmonic cannot be correctly 
determined, but its presence can be emphasized if its initial 
phase is not null; 

 - the alias phenomenon being theoretically and 
practically justified, it requires a special attention in order to 
prevent the errors. 

 - any useful program for the harmonics analysis should 
allow the reconstitution of the wave from the identified 
harmonics and the comparison with the initial wave. In this 
way, the square mean error between them can be determined 
and used as a criterion for the end of the algorithm. 
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