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Abstract—Recent efforts in mathematical programming 

have been focused a popular sequential quadratic 
programming (SQP) method. In this paper,  a method for 
mathematical programs with equalities and inequalities 
constraints is presented, which solves two subproblems at each 
iterate, one a linear programming subproblem and the other is 
a quadratic programming (QP) subproblem. The considered 
method assures that the QP subproblem, is consistent. 
 
Index Terms—constrained optimization, merit function, 
Sequential Quadratic Programming, super linear convergence.   

I. INTRODUCTION 
 
We consider the mathematical programming problem 

with general equality and inequality constraints 
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where the objective function ℜ→ℜnf : , and the 

constraint functions pnmn gh ℜ→ℜℜ→ℜ :,:  are 
assumed to be twice continuously differentiable.  

We briefly will describe the notation used in this paper. 
All vectors are column vectors. The subscript notation ix  
referees to an element of the vector x. A superscript k is used 
to denote iteration numbers. Superscript “T” denotes 
transposition. nℜ  denotes the space of n-dimensional real 
column vectors. 

We denote by *x  a local solution of the problem (1.1). 
The Lagrangian function associated with the problem (1.1) 
is defined by 

( ) ( ) ( ) ( )xgxhxfxL TT µλµλ ++=,, , 

where pm ℜ∈ℜ∈ µλ ,  are vectors of Lagrange multipliers.  
Assume that a Linear Independence Constraint 
Qualification (LICQ) condition holds at

*x
; then multipliers 

*λ  and 0* ≥µ  exist such that [1]:  
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A primal-dual solution ( )*** ,, µλx  is said to be a 
Karush-Kuhn-Tucher (KKT) triple. 

The basic idea of the typical sequential quadratic 
programming (SQP) is as follows [2]. Let the current KKT 
point be ( ) ( ) ( )( )kkkx µλ ,, . A new approximation 

( ) ( ) ( )( )111 ,, +++ kkkx µλ  to the solution is the procedure:  
( ) ( ) ( ) ( ) ( ) QPkQPkk

k
kk dxx µµλλα ==+= +++ 111 ,, , 

where ( )kd  is a search direction which minimizes a 
quadratic model subject to the linearized constraints 
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and ( )QPQP µλ ,  are taken as the Lagrange multipliers for 
(1.3). kα  is the step size along the direction chosen to 
reduce the value of the merit function [3-5]: 
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KK+=

where ∑∑
==

+>
p

j
j

m

j
jkc

1

*

1

* µλ  is a penalty parameter. 

The matrix kB  is a symmetric approximation to the 
Hessian of the Lagrangian function [6, 7]: 

( ) ( ) ( )( )kkk
xxk xLB µλ ,,2∇≈ . 

In traditional SQP method, the quadratic program (1.3) 
may be inconsistent; the feasible set of (1.3) may be empty. 
This is serious limitation of the SQP method. Several 
techniques for evitation of the inconsistency phenomen of 
the linearized constraints of the quadratic programming 
problem (1.3) were proposed [8-13]. Recently, in [11,12], 
modifications of the SQP method were proposed where at 
each step two subproblems are resolved: one linear 
programming problem or one linear square problem and one 
quadratic programming problem. 

The presented method in this paper was announced 
in [14] and it is similar to the one given in [9] .At each 
iteration, two subproblems are solved – one is a linear 
programming; the other is a quadratic subproblem. Our 
algorithm is distinct from the one proposed in [9] in two 
important ways. Firstly, in both linear and quadratic 
programming problems, beside the inequality constraints of 
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the problem (PNL), we also consider the equality ones. 
Secondly, at each iterate the linear programming 
subproblem is deferent from the one is [9]; we consider the 
local behavior of all constraints. 

II. THE MODIFIED SQP METHOD 
 

We consider the following linear programming 

subproblem: 
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Let ( ) ( ) ( )k
i

k
i

k zyd ~,~,
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 be the solution of (2.1). If ( )kx  is 

feasible, we have ( ) 0~
=kd . Now we consider the following 

modified quadratic programming (MQP) subproblem: 
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Notice that ( )kd
~

is feasible solution of (2.2) so, the 
feasible region of this subproblem is nonempty. Let ( )kd  be 
the solution of MQP (2.2). If matrix kB  is positive definite, 

( )kd  is unique and is a descendent direction of ( )xF
kc . 

We now describe the proposed algorithm. 
Step 0. Given the initial approximate ( ) nx ℜ∈0 , 

( ) ( ) pm ℜ∈ℜ∈ 00 , µλ a nn ×  symmetric positive definite 
matrix 0B , an initial penalty parameter 00 >c  and the 

scalars ( )1,0,
2
1,0 ∈
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Step1. Solve subproblem (2.1) to obtain ( ) ( ) ( )k
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iz , stop; 

Step 2. Solve subproblem (2.2) to generate ( )kd . If  
( ) 0=kd , stop; 

Step 3. Choose the penalty parameter kc  such that 
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Step 4. Select the smallest positive integer s such that 
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Let s
k γα =  and 

( ) ( ) ( ) ( ) ( ) MQPkMQPkk
k

kk dxx µµλλα ==+= +++ 111 ,, ; 
Step 5. Choose a symmetric positive definite 

matrix 1+kB . Set 1: += kk . Go to Step 1. 

The matrix kB  can be calculated using the technique 
from [6]. This guaranty that they are positive definite and 
they approximate the Hessian matrix ( ) ( ) ( )( )***2 ,, µλxLxx∇  
on the “tangent” subspace of active constraints, and that the 

( ){ }kx  superlinear converge to ( ){ }*x . 

III. ALGORITHM FOR QUADRATIC PROGRAMMING  
The efficiency of proposed SQP algorithm depends on 

the efficiency of the algorithm of solving quadratic 
programming sub problems (2.2). There are a great number 
of algorithms of solving quadratic programming problems. 
A relative complete bibliography of these methods can be 
found in [15]. In case we have a quadratic programming 
problem with a great number of variables and constraints, it 
is necessary to effectuate a relatively great number of 
arithmetical operations to find the solution of the problem. 
In such situations, it is more convenient to solve a finite 
succession of quadratic programming problems without any 
restriction or with simple restrictions, instead of solving the 
considered problem. Such a method is presented in [16].  

We consider the quadratic programming problem with 
the following form: 

( )
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where H is a symmetric matrix , positive definite of the 
nn×  dimension, A is a nm ×  matrix; g, x and b are 

column vectors, .,, mn bxg ℜ∈ℜ∈  
It is well known (see for example [2, 17]) that the optimal 
solution *x  of the problem (1.1) is defined by the relation: 

( )gAHx T +−= − *1* λ .                     (3.2) 

The Lagrange multipliers vector 
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is the solution of the dual problem: 
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where ., 11 gAHbcAAHD T −− +==  

If the inverse matrix H –1 is well known, then the quadratic 
programming problem (3.1) would be equivalent to the 
problem (3.3) which has simple constraints. A method of 
solving the problem (3.1) is proposed in [16], in which the 
inversion of matrixes is avoided. The method results from 
joining the solutions of some systems of linear equations 
with the same matrix H with the method of selecting active 
constraints 

 The method proposed for solving the quadratic 
programming problem (3.1) consists in the following: 

Step 1. The free minim point of the quadratic function 
x0 is determined: 

( ) xgHxxxf TT +=
2
1                          (3.4) 
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The calculation of the minim 0x  comes to the solution of the 
system of linear equations: gHx −= ; however, some 
methods of unconstrained optimization, such as that of 
conjugate directions can be also utilized. 

Step 2.The vector 

[ ]TT
m

TT xaxaxaAxd 00
2

0
1

0 ,,, K==  

is determined by the point 0x , where  T
ia is the line i of the 

matrix A. If d≤ b then 0* xx =   is the most propitious 
solution and the problem (3.1) is solved, otherwise it is 
passed to the following step. 

 Step 3.We computing the free minim points 
mxxx ,,, 21 K  of the respective quadratic functions: 

( ) xaHxxxf T
i

T
i −=

2
1  , i=1,2,…,m                     (3.5)  

This may be achieved by solving the linear equation 
systems: i

i aHx = , i=1, 2,…, m with the same matrix H, or 
by applying other methods of unconstrained optimization. 

Step 4. Using the solutions obtained above, at Step 3, 
we make the matrix ( )ijwW =  with the dimensions mxm. 

This matrix has the elements mjixaw jT
iij ≤≤= ,1, . 

Step 5. The quadratic programming problem is solved 
with simple constraints:  
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Step 6. The optimum solution is found so: 
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* ,...,, λλλλ =  - is the optimum in (3.6) 
The validity of this algorithm is justified by the following 
theorems and lemmas. 
Lemma 3.1 The matrix W is symmetric and semi positive 
definite with the diagonal elements 0>iiw , i=1,2,…,m. If 
m≤ n and the vectors maaa ,,, 21 K  are linear independent 

then det(W)≠0 (the inverse matrix 1−W exists) and the 
matrix W is positive definite. 
Proof: For any i, j is true: 

( ) ,1
ji

iT
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j

iTjjT
iji wxaHxHaHxxxaw ===== −  

and as follows WW T = . If we note [ ]mxxxX K,, 21= - a 
matrix with its dimensions mxm, its columns are the vectors 

mxxx K,, 21 . Then according to that was written above we 
can write: HXXW T= . So W is a positive semi definite 

matrix with ( ) 0>= iTi
ii Hxxw , because the matrix H is as 

being positive definite. If we have a system of linear 
independent vectors { } m

iia  then the ( ) mXrank =   and as a 

consequence rank(W)=m and 0fW . The lemma has been 
proved. 
Lemma 3.2 The quadratic programming problems (3.3) and 
(3.6) are equivalent. 

Proof: According to the proposed algorithm TAHX =  and 
so TTTT AAHAXHXXW 1−===     . We also notice that 

gAHd 1−=  (Step1), as a consequence we have 

dbgAHbc +=+= −1 . The lemma has been proved. 
Consequence: The quadratic programming problem (3.6) 
has a unique optimum solution. 
We notice that ∗x  that has been calculated using formula 
(3.7) is the same as that one calculated using formula (3.2). 
This justifies the proposed algorithm 

IV. CONCLUSION 
In this paper, we have presented a SQP method which we 

solve two subproblems: one a linear programming and the 
other is a quadratic programming (QP) subproblem. The 
following main results are obtained. First, the proposed 
method can assure that the QP subproblem is consistent. 
Second, since solving a linear programming is very easy, so 
the method can be implemented without difficulty.  
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