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Abstract—Recent efforts in mathematical programming
have been focused a popular sequential quadratic
programming (SQP) method. In this paper, a method for
mathematical programs with equalities and inequalities
constraints is presented, which solves two subproblems at each
iterate, one a linear programming subproblem and the other is
a quadratic programming (QP) subproblem. The considered
method assuresthat the QP subproblem, is consistent.

Index Terms—constrained optimization, merit function,
Sequential Quadratic Programming, super linear conver gence.

[. INTRODUCTION

We consider the mathematica programming problem
with general equality and inequality constraints
f(x)® min
subject to {
h(x)=o, ¥

g0, |
where the objective function f:A"® A, and the
congraint functions h:A"® A™,g:A"® AP
assumed to be twice continuoudly differentiable.

We briefly will describe the notation used in this paper.
All vectors are column vectors. The subscript notation x;

refereesto an element of the vector x. A superscript kisused
to denote iteration numbers. Superscript “T’ denotes
transposition. A" denotes the space of n-dimensional real
column vectors.

We denote by X" alocal solution of the problem (1.1).
The Lagrangian function associated with the problem (1.1)
is defined by

L(x! ,m)= f(x)+1 Th(x)+m g(x),

(1.1)
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where | T A™ mi AP arevectors of Lagrange multipliers.

Assume that a Linear Independence Congraint
Qualification (LICQ) condition holds at . ; then multipliers

| " and m 3 0 exist such that [1]:
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A primal-dual solution (x*,l m) isssidtobea
Karush-Kuhn-Tucher (KKT) triple.

The basic idea of the typical seguential quadratic
programming (SQP) is as follows [2]. Let the current KKT

point be (x(k),l (k),m(k)). A new approximation
(x('“l),l (k1) m(k"l)) to the solution is the procedure:

5 (k1) = o (k) +akd(k), | (k1) o k) = meP
where d® is a search direction which minimizes a
guadratic model subject to the linearized constraints
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h (<9)+[ih x9 d=0i=12k.my (13

and (I QP,mQP) are taken as the Lagrange multipliers for
(1.3). a, is the step size along the direction chosen to
reduce the value of the merit function [3-5]:

Fe, (x) = f(x)+cq max{0,|hl(xl,K,|hm (x) 9:(x). K g p(x)},

6” * g * .
where ¢, > Qq |I j|+a m; isapenalty parameter.
=1 j=1
The matrix B, is a symmetric approximation to the

Hessian of the Lagrangian function [6, 7]:
B » N2,L[x),1 0, rf).

In traditiona SQP method, the quadratic program (1.3)
may be inconsistent; the feasible set of (1.3) may be empty.
This is serious limitation of the SQOP method. Severa
techniques for evitation of the inconsistency phenomen of
the linearized congraints of the quadratic programming
problem (1.3) were proposed [8-13]. Recently, in [11,12],
modifications of the SQP method were proposed where at
each step two subproblems are resolved: one linear
programming problem or one linear square problem and one
guadratic programming problem.

The presented method in this paper was announced
in [14] and it is similar to the one given in [9] .At each
iteration, two subproblems are solved — one is a linear
programming; the other is a quadratic subproblem. Our
algorithm is diginct from the one proposed in [9] in two
important ways. Firstly, in both linear and quadratic
programming problems, beside the inequality constraints of
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the problem (PNL), we also consider the equality ones.
Secondly, at each iterate the linear programming
subproblem is deferent from the one is [9]; we consider the
local behavior of al congtraints.

Il. THEMODIFIED SQPMETHOD

We consider the following linear programming

subproblem:
j (y,Z):g .+§ z. ® min
i=1
())] dfy,,i=LK,m
gi(x(k))+ Ng, (x(k))] d£z,i=12K,p,
y;i 30,z 30"I.
5 (k)
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Let dlk ),y,( ) be the solution of (2.1). If xk ) i
feasible, we haved ®) =0. Now we consider the following
modified quadratic programming (MQP) subproblem:

%dTBkd +[ur (<@ d @ min d

—

_y(k)£h( k) [Nh( (k))]ngyi(k),i:J,K,my(2.2)
0 (<) g (9 a2 =120 by

Notice that d¥)is feasible solution of (2.2) so, the

feasible region of this subproblem is nonempty. Let d(k) be
the solution of MQP (2.2). If matrix B, is positive definite,

d isunique and is a descendent direction of F, (x).

We now describe the proposed algorithm.

Step 0. Given the initiad approximatex®1 A",
107 A™ M7 APa n" n symmetric positive definite
matrixB,, an initial penalty parameter c, >0 and the

scalarsb 1 8%,1291 (02);k:=0;
e 2g
Stepl. Solve subproblem (2.1) to obtaind ), 7¢), 7(K)
iFd®
Step 2. Solve subproblem (2.2) to generate d("). If

=0, stop;
Step 3. Choose the penalty parameter c,

=0 and $i ¥ >0 or,z¥ >0, stop;

dk)
such that

g MPQ S MPQ
Ck>a|' j |+a m
=1 =1
Step 4. Select the smallest positiveinteger s such that
Fe, (x09) + ga®)g Fe, (x09)- bge(d®) Ba,
Leta, =g° and
k+1) = X(k) +akd(k), | = mMQP :

Step 5. Choose a symmetric positive definite
matrixB,,,. Setk:=k+1. Goto Sep 1.

X (k+2) MQP k)
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The matrix B, can be calculated using the technique
from [6]. This guaranty that they are positive definite and
they approximate the Hessian matrix Ni(L(x(*),l (*),n{*))
on the “tangent” subspace of active congtraints, and that the
{x(k)} superlinear converge to{x(*)}.

[1l. ALGORITHM FOR QUADRATIC PROGRAMMING

The efficiency of proposed SQP agorithm depends on
the efficiency of the algorithm of solving quadratic
programming sub problems (2.2). There are a great number
of algorithms of solving quadratic programming problems.
A relative complete bibliography of these methods can be
found in [15]. In case we have a quadratic programming
problem with a great number of variables and constraints, it
is necessary to effectuate a reatively great number of
arithmetical operations to find the solution of the problem.
In such gdtuations, it is more convenient to solve a finite
succession of quadratic programming problems without any
restriction or with simple restrictions, instead of solving the
considered problem. Such amethod is presented in [16].

We consider the quadratic programming problem with
the following form:

_1.7 T :
f(x) 2x Hx+g x® min (31)
subject to linear constraints  Ax £ b,

where H is a symmetric matrix , positive definite of the
Nn° n dimension, Aisa M N matrix; g, x and b are
column vectors, g, xI A" bl A™,

It is well known (see for example [2, 17]) that the optimal
solution X, of the problem (1.1) isdefined by the relation:

X =-HATI" +g). (32)
The Lagrange multipliers vector
L=tz
is the solution of the dual problem:
il ):%ITDI +c'l  ® min 33)

subjectto 113 0,i =1,2,Km,

where D= AH*AT ,c=b+ AH 1g.

If the inverse matrix H ™ is well known, then the quadratic
programming problem (3.1) would be equivalent to the
problem (3.3) which has smple constraints. A method of
solving the problem (3.1) is proposed in [16], in which the
inversion of matrixes is avoided. The method results from
joining the solutions of some systems of linear equations
with the same matrix H with the method of selecting active
constraints

The method proposed for solving the quadratic
programming problem (3.1) consistsin the following:

Step 1. The free minim point of the quadratic function
X0 is determined:

f(x) =x"Hx+g"x (349
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The calculation of the minim x° comes to the solution of the
system of linear equations.Hx=-g; however, some
methods of unconstrained optimization, such as that of
conjugate directions can be also utilized.

Step 2. The vector

— A0 = [T 40 AT 0 T,0
d=Ax" =la; x",a,x ,K,amxIr

is determined by the point x°, where a' isthelinei of the

matrix A. If df b then x" =x° is the most propitious
solution and the problem (3.1) is solved, otherwise it is
passed to the following step.
Step  3.We computing
X1 X9, K Xy of the respective quadratic functions:

f. (x):ixTHx- a'x,i=12...m
2

the free minim points

(3.5)

This may be achieved by solving the linear equation
systems: Hx' = a ,i=1, 2,..., mwith the same matrix H, or
by applying other methods of unconstrained optimization.
Step 4. Using the solutions obtained above, at Sep 3,
we make the matrix W = (W,) with the dimensions mxm.
This matrix hasthe elementsw;, =ax! 1£i, j £m.
Step 5. The quadratic programming problem is solved
with simple congraints:
1. 1.+ T U
minij (I )==1"'W +(d+b) ||l 3 3.6
| {J ( ) 5 ( ) | % (3.6)
Step 6. The optimum solution is found so:

J )
x =x"- g lix,
i=1

(3.7)

* *

where | © = (I 1l e m)T - isthe optimumin (3.6)

The validity of this algorithm is justified by the following
theorems and lemmas.

Lemma 3.1 The matrix W is symmetric and semi positive
definite with the diagonal elements w; >0, i=1,2,...m. If

mE n and the vectors ay,a,,K,a,, are linear independent
then det(W): O (the inverse matrix W lexists) and the

matrix W is positive definite.
Proof: For any i, j istrue

) AT ) ) ) )
W | =a'x! :(XJ) Hx' :ajTH IHx! :aij' =wj,

and as follows W™ =W . If we note X = xl,xz,meJ- a
matrix with its dimensions mxm, its columns are the vectors
x*, x2,Kx™ . Then according to that was written above we
can write W= XTHX . So W is a positive semi definite
matrix with w;; = (xi )T Hx' >0, because the matrix H is as
being positive definite. If we have a system of linear
independent vectors {ai}im then the rank(X) =m andasa
consequence rank(W)=mand W F 0. The lemma has been
proved.

Lemma 3.2 The quadratic programming problems (3.3) and
(3.6) are equivalent.
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Proof: According to the proposed algorithm HX = AT and
soW=XTHX =XTAT = AH'AT . Wealso notice that
d=AH g (Stepl), as a consequence we have

c=b+AH g =b+d . Thelemma has been proved.

Consequence: The quadratic programming problem (3.6)
has a unique optimum sol ution.
We notice that x. that has been calculated using formula

(3.7) is the same as that one calculated using formula (3.2).
Thisjudtifies the proposed algorithm

IV. CONCLUSION

In this paper, we have presented a SQP method which we
solve two subproblems: one a linear programming and the
other is a quadratic programming (QP) subproblem. The
following main results are obtained. First, the proposed
method can assure that the QP subproblem is consistent.
Second, since solving a linear programming is very easy, so
the method can be implemented without difficulty.
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