
9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 97

Abstract—The continuous evolution in hardware and fieldbus

communication led to a growth of complexity in these areas and,
as a result, the need for new standards, new modeling and
development tools for distributed systems has been appeared.
IEC 61499 provide for engineers a generic distributed modeling
platform which can one hand simplify the modeling of
distributed systems and on the other hand diminish the
differences in modeling between business and industrial systems.
This paper describe a modeling application based on the IEC
61499 standard and the modified MVC pattern, for a
manufacturing system in miniature, consisting of two machining
lines, one assembly line and the transport system.

Index Terms—Distributed Control, Function Block
Methodology, IEC 61499, Manufacturing Systems, MVC Pattern.

I. INTRODCTION

In the last decades significant changes in the manufacturing
environment have been noticed: moving from a local economy
towards a global economy, with markets demanding for
products with high quality at lower costs, highly customized
and with short life cycle, leading to mass customization. To
remain competitive, the companies search to answer more
close to the customer demands, by improving their flexibility
and agility while maintaining their productivity and quality.

 In parallel, the continuous evolution of technology
often requires the updating and integration of existing systems
within new supervisory environments, to avoid their
technological obsolescence.

Classical manufacturing systems are characterized by a
good production optimization but a weak response to change,
mainly because of the rigidity and centralization of the control
structure. In these circumstances, the challenge is to develop
manufacturing control systems with autonomy and
intelligence capabilities, agile and fast adaptation to the
environments changes, more robust against the occurrence of
disturbances, and easier integration of manufacturing
resources and legacy systems [Leitão, 2004].
 Many approaches have been proposed in the academic
literature to deal with the reconfiguration problem and internal
and external disturbances in manufacturing systems. The well-

known approaches are biological manufacturing systems
(BMS) [Ueda et al., 1997], holonic manufacturing systems
(HMS) [HMS, 2008], fractal manufacturing systems
[Warnecke, 1993] and virtual cellular manufacturing (VCM)
[Drolet s.a., 1989].

II. THE IEC 61499 STANDARD

IEC 61499 is a standard developed by IEC (International
Electrotechnical Commission) which define a software
paradigm built on the basis of FB (Function Blocks) that
encapsulates data along with its behavior in a form that is
similar to physical entities, i.e. electronic circuits or hardware
elements. The initiation of the development process of this
standard dates back to 1990 and reside in IEC Technical
Committee 65 proposal that function blocks would be a
generic concept that could be applied to a wide range of
standards i.e., PLCs, Smart Devices, Fieldbus protocols,
building management systems and thus could be considered as
the essential element of decentralized and distributed IPMCSs
(Industrial-Process Measurement and Control Systems)
[Christensen J., 2000]

The IEC 61499 Standard defines an open architecture for
the next generation of distributed control and automation. The
key elements of distributed control architecture under IEC
61499 are application, device and resource. An application is
a related set of functions that must talk to each other to fulfill a
control task. A device is a control unit having one or more
processors. It interfaces to the physical I/O and also
communicates with other devices on the network. A resource
is essentially a processor on which part of a distributed
application will run.

The programming unit of the IEC 61499 is the function
block (FB). It is the basic building block from which entire
applications may be built. There are three types of function
blocks: basic function blocks, composite function blocks and
service interface function blocks.

A basic function block (Figure 1a) executes an elemental
control function, such as reading a sensor or setting the state
of an actuator, and contains algorithms and an execution
control chart (ECC). Basic function blocks may be combined

Modeling Manufacturing Systems Using
the IEC 61499 Standard

Valentin VLAD 1, Cristina Elena TURCU2
"Stefan cel Mare" University of Suceava

str.Universitatii nr.13, RO-720229 Suceava
1 vladv@usv.ro, 2 cristina@usv.ro

mailto:vladv@usv.ro
mailto:cristina@usv.ro

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 98

together in a composite function block, to encapsulate a
higher-level control function. The service interface function
block provides the communication services among devices.

A composite function block (Figure 1b) contains other

composite function blocks and/or basic function blocks.

Figure 1. a) basic function block; b) composite function block

The standard is based on an event-based execution model.

Each function block has event inputs and outputs as well as
data inputs and outputs. In a basic function block, the
execution of an algorithm is triggered by the occurrence of an
input event. The executed algorithm produces from the input
data new output data. When the algorithm has finished, an
output event is generated. This output event might then be the
input event to another function block [Vyatkin, 2006].

III. MVC PATTERN

MVC (Model – View – Controller) is an architectural
pattern used in software engineering which defines a way of
breaking an application, or even just a piece of an application's
interface, into three parts: the model, the view, and the
controller. In this manner, a component may be modified
without affecting the others.

The traditional MVC pattern (Figure 2a) was developed to
address separation of concerns in user interfaces for object-
oriented systems. In this pattern, the model contained data
whose values were independent of their graphical
representation; the role of view was to provide a specific
textual or graphical rendering of some or all of the data in the
model, and the controller managed the user interactions with
the model and view.

In [Christensen, 2000] is presented a possible adaptation of
this pattern for use in the modeling, simulation and testing of
industrial-process measurement and control systems (IPMCSs)
in the IEC 61499 context, by modifying the definitions for
model, view and controller. Thus, the model is defined as a
function block that represents the time-dependent logical

behavior of the system or device being controlled. The view is
defined as a FB that represents the graphical display
associated with one or more model types, and the controller is
replaced by a function block that encapsulates the control
functions to be performed on one or more instances of
associated model types. The controller present appropriate
event and interfaces for integration of its functions with those
of other controller blocks.

Figure 2. MVC Pattern a) Classic form; b) Modified framework

Whether in the classical MVC framework a controller
represents the functions that may be performed by a human
interface element to modify the data in the model or the
appearance of the model presented in the view, in the new
framework user interaction is represented by a HMI
(Human/Machine Interface) element, which is also a function
block (Figure 2b).

Input variables

Event inputs Event outputs

Algorithms

Type identifier

(IEC 1131-3)

Internal
variables

Execution
Control
Chart

Output variables

Type identifier

Execution
Control

Event inputs Event outputs

Input variables Output variables

a) b)

Controller

View Model

HMI

View

Controller

Model

a)

b)

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 99

IV. SOFTWARE APPLICATION

In this section a simple IEC 61499 compliant application for
modeling a manufacturing system in miniature is described.
The manufacturing system is consisting of two machining
lines, one assembly line, manipulators and conveyors.

The application is developed using the development kit for
functions block FBDK licensed by Rockel Automation
Company [FBDK, 2008].

FBDK is an effort of the Holonic Manufacturing Systems
consortium and allow the users to define function blocks and
to use built-in and/or user defined FBs to design elements of a
distributed control application.

Using FBDK each FB Type (FBT) can be translated to a
class in Java. Then each of the FBs, whether user-made or
built-in, can be tested for the reliability of its designed

functionalities. Moreover, applications, both stand-alone and
distributed can be run along with a graphical interface for
visualization and parameter variation.

A. General presentation

The application simulates the manufacturing process of

products composed by two components that are first machined
and then assembled in an end product, as may be observed
from flow sheet illustrated in Figure 3. Raw materials are
provided from Store 1 towards Machine 1 and Machine 2 to be
machined in Type A respectively Type B products. The
resulted components are then transported to an assembly
system where they are assembled into end products. The
finished products are finally transported and stored in Store 2.

Figure 3. The manufacturing flow

The architecture of the application is based on the MVC

pattern, adapted for IEC 61499 context, previously described.
It is divided into four main components:

(a) the graphical interface (the view) through that the user
may graphically observe the evolution of the system,

(b) the HMI interface through that the user may interact
with the system and may look for the values of system’s
sensors,

(c) the control component, which manage the operation of
the system in correlation with user’s actions and

 (d) the model, represented by function blocks that
encapsulate data and behavior for each element of the system
(manipulators, conveyors, machines and assembly devices).

B. Description of implementation

The developed system is composed by three devices:
Graphic, Control and Commands, each of them being
composed from resources, and resources on their turn from
interconnected function blocks encapsulating algorithms. Each
device is related with a window of the application, with the
same name, as can be seen in Figure 4.

The Graphic device contains resources and function blocks
that represent the behavior of the elements of the system
(machines, transport elements) and allow graphic visualization
of the system evolution. Also, it contains FBs for displaying a
text or a background color.

The Control device provides a HMI interface for user

interactions and encapsulates resources and function blocks
which assure the control of elements involved in the simulated
manufacturing process. By means of the HMI interface an user
may trigger the execution of a waiting command (using the
START button), may switch between Auto and Manual mode
and may monitor the values of the sensor associated with
machining, assembly and transport elements. Also, the
window associated with the Control device provides the
values of two counters: one for number of waiting commands
and one for finished products.

The Commands device, related with the Commands window
of the application, simulate an application running on a
computer, through that someone may create and send
commands for products toward the manufacturing system,
specifying the type and the amount of products to be realized.

When the system receive a command from the Commands
device, if the system is in the Manual state, the Waiting
command led start to blink and the counter for Waiting
commands is updated. The system will remain in this waiting
state until the START button is pressed. Then the execution of
waiting command is triggered and, from Store 1, two pieces of
raw material for each end product are delivered by the
manipulator Robot 1 toward Machine 1 and Machine 2.

In the simulated process the type of products is represented
by the color of the component machined by Machine 1 (a
ring). This color is extracted from the command sent by the
user using the Commands window.

Store 1 Store 2 Assembly

Machine 1

Raw materials

Type A Products

Type B Products

End
Products

Machine 2

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 100

The process of delivering raw materials from the Store 1 will
continue until the number of waiting commands became zero.
After the assembly process, the end products are transported

toward Store 2. Each time a product is stored in Store 2, the
Finished products counter from Control window is
incremented.

Figure 4. Application windows

Significant function blocks

In Figure 5 are presented the FB interconnections inside the
START_CTRL resource. The purpose of this resource is to
take up the commands sent by Commands device, launch them
in execution if the system is in the Auto state or activate the
blinking of Waiting command led if the system is in the
Manual state. When the START button is pressed the resource
start the execution of the waiting commands.

Figure 5. FB interconnections inside the START_CTRL resource

The controller of the START_CTRL is an instance of the
LOAD_CTRL basic function block (Figure 6). In Figure 6a is
depicted the FB’s interface with events and data I/O, and in
Figure 6b is presented the Execution Control Chart (ECC) of the
FB.

The data inputs of the FB are the position of the
Auto/Manual switch, the HOME sensor of the manipulator Robot
1 from Store 1 and the counter of products waiting to be

fabricated. The FB has two boolean data outputs: PATH –
indicating the path that the piece of raw material, currently
transported by Robot 1, must follow (to Machine 1 or to Machine
2), and CMD – which enable or disable the blinking of the
Waiting command led.

The controller receives three kinds of events: (a) events from
the Commands device, when someone launch a new request for
products, (b) events from the FB associated with the START
button (requests to trigger the execution of a waiting command)
and (c) events from the FB associated with the manipulator Robot
1, indicating the moment when the manipulator is in the HOME
position.

When a CMD_RQ event is received (from the Commands
device) the controller analyses the position of the Auto/Man
switch. If its current position is Auto the command is launched in
execution by an output event (ELOAD) generation. Otherwise, if
the switch is in the Manual state, the presence of a waiting
command is retained in a boolean internal variable and the output
variable CMD get the ON value for activating the blinking of the
Waiting command led.

Pushing the START button generates a START_CMD event
for the LOAD_CTRL function block. This event has significance
only there is a waiting command and leads to stop the blinking
action of the indicator led and the type and the amount of
products to be start the command execution by loading Robot 1
with a raw material piece. When Robot 1 comes back in the
HOME position after delivering the first raw material piece
(which was routed to Machine 2), it is automatically loaded with
a new raw material piece to be routed toward Machine 1. If there
are no other commands to be served when the manipulator comes
back again in the HOME position, the controller goes in the
START state, waiting a new command (Figure 6b).

Another important function block is the QUEUE_CLR FB that
implements a queue for the commands received from the

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 101

Commands device. The commands are stored in the queue until
its are launched in execution. In this queue are retained
fabricated, for each command. While the system is serving a
command, each time the execution of a new product is started, the
counter for the amount requested by the command is
decremented. When the value of the counter became zero a new
command is extracted from the queue. The system stops when

there is no any command in the queue.
The function blocks considering in the design phase are

abstract representations and may be developed in different device
types (PLC, microcontroller based stations, etc.). But functions
implemented for a function block are not necessarily associated
one-to-one to the device. Also, other applications, such as a
supervisory system may be connected to the system.

Figure 6. LOAD_CTRL function block

a) Interface; b) Execution Control Chart - ECC

V. CONCLUSIONS AND FUTURE WORK

This paper presents a basic model of a simple application for
modeling manufacturing systems, using the IEC 61499 standard.
The application represents a first step in a more complex project
dealing with the reconfiguration problem of the manufacturing
systems.

The IEC 61499 standard, recently adopted (2005), is currently
analyzed and employed in distributed applications by many
researchers, towards to be extended such as to satisfy at the best
hand the requirements for development of distributed systems. In
Romania, the researches in this area are in an incipient phase.

The encapsulation offered by IEC 61499 supply a modular
development which makes easy the redesign or design of future
systems. Some benefits of this IEC 61499 approach are: (a)
intuitive programming, (b) reutilizing of function block and (c)
easy debugging.

Future work is intended to add new functionalities to the
application such as connectivity to a database, possibility of
system remote monitoring through a web browser and
supplementary control for system auto reconfiguration, when a
device brakes down. Also will be examined the possibility to
deploy the application on physical devices for controlling real
machining and assembly systems existing at the University of
Suceava.

 REFERENCES
[1] J.H.Christensen, Basic Concepts of IEC 61499, available at
http://www.holobloc.com
[2] J.H.Christensen, Design paterns for sistem engineering in IEC 61499,
Otto-von-Guericke-Universitat Magdeburg Germany, 22-23 March 2000, 63-71.

[3] Drolet, J.R., Moodie, C. L., Montreuil B. Scheduling factories of the
future, J. Mech. Work. Technol. 20 (1989) 183–194.
[4] FBDK. Function Block Development Kit – available at
http://www.holobloc.com
[5] HMS. Holonic Manufacturing Systems Consortium - web site.
http://hms.ifw.uni-hannover.de, 2008.
[6] T.Hussain, G.Frey, Developing IEC 61499 Compliant Distributed
Systems with Network Enabled Controllers, Proceeding of the 2004 IEEE
Conference on Robotics, Automation and Mechatronics, RAM-2004,
Singapore, pp. 613-618, Dec. 2004
[7] Leitão, P. An Agile, Adaptive Holonic Architecture for Manufacturing
Control. Phd Thesis, University of Porto, 2004
[8] Ueda, K., Vaario, J., Ohkura, K. Modelling of biological manufacturing
systems for dynamic reconfiguration, Ann. CIRP 46 (1997) 343–346.
[9] Vyatkin, V. IEC 61499 Function Blocks for Embedded and Distributed
Control Systems Design, Instrumentation Society of America, USA, July,
2006.
[10] H.J. Warnecke, The Fractal Company, Springer, Berlin, 1993.
[11] Calin CIUFUDEAN, George MAHALU, Availability of Flexible
Manufacturing Cells, Advances in Electrical and Computer Engineering,
Suceava, Romania, ISSN 1582-7445, No 2/2001, volume 1 (8), pp. 15-18
[12] Cornel TURCU, Cristina TURCU, Facilities in DesignerAX–an All-
Purpose Automation ActiveX Framework, Advances in Electrical and
Computer Engineering, Suceava, Romania, ISSN 1582-7445, No 1/2003,
volume 3 (10), pp. 17-20
[13] Leonard IURESCU, Using a Multiagent System for Controlling a
Manufacturing Cell with a Robot, Advances in Electrical and Computer
Engineering, Suceava, Romania, ISSN 1582-7445, No 1/2005, volume 5 (12),
pp. 46-50
[14] Cornel TURCU, Cristina TURCU, Alin Dan POTORAC, Adrian
GRAUR, Considerations over the Data Acquisition System for Energetic
Power Consumption, Advances in Electrical and Computer Engineering,
Suceava, Romania, ISSN 1582-7445, No 2/2002, volume 2 (9), pp. 5-9

a) b)

http://www.holobloc.com
http://www.holobloc.com
http://hms.ifw.uni-hannover.de

