Abstract—The paper presents analysis of operation of dual inverter-fed motor drive with synchronized pulsewidth modulation (PWM) in the zone of overmodulation. This drive topology includes two insulated dc sources (with equal or different voltages), feeding two standard three-phase inverters, connected with an open-end winding induction motor. Algorithms of synchronized PWM provide both continuous synchronization of the phase voltage of the induction motor and required sharing of the output power between two dc sources. Simulation results are given for open-end winding drive systems with continuous and discontinuous versions of synchronized PWM.

Index Terms—adjustable speed drive, converter control, inverter, pulsewidth modulation, voltage synchronization

I. INTRODUCTION

Multilevel converters and drives are a subject of increasing interest in the last years due to some advantages compared with conventional three-phase systems. Some of the perspective topologies of power converters are now cascaded (dual) two-level converters which utilize two standard three-phase voltage source inverters [1]-[3].

The structure of the adjustable speed drive system based on cascaded converter is constructed by splitting the neutral connection of the induction motor and connecting both ends of each phase coil to a two-level inverter. Dual inverter-fed open-end winding motor drives have some advantages such as redundancy of the space-vector combinations and the absence of neutral point fluctuations [4]-[7].

Almost all versions of classical space-vector PWM are based on the asynchronous principle, which results in sub-harmonics (of the fundamental frequency) in the spectrum of the output voltage of converters, that are very undesirable in medium/high power applications [8]-[9]. In order to provide voltage synchronization in dual inverter-fed drives, a novel method of synchronized PWM has been applied for control of dual inverter-fed drives with single dc voltage source [10], and for the systems with two dc sources: without power balancing between sources [11], and also with power balancing PWM algorithms in linear control range [12].

High power/high current traction drives (ship propulsion, locomotive, electrical vehicles, etc.) are the perspective area of application of dual inverter-fed drives. Flexible PWM control of dual two-level inverters can provide increased effectiveness of traction systems. So, this paper presents results of investigation of dual inverter-fed drives with synchronized PWM with required power sharing between two dc sources at the highest fundamental frequencies in the zone of overmodulation.

II. BASIC TOPOLOGY OF A DUAL INVERTER-FED OPEN-END WINDING MOTOR DRIVE WITH TWO DC SOURCES

Fig. 1 presents basic structure of a dual inverter-fed open-end winding induction motor drive with two standard voltage source inverters with pulsewidth modulation, which are supplied by two separate dc-link sources with voltages V_{dc1} and V_{dc2} [3]. Separate dc supply is used for each inverter to block the flow of third harmonic currents.

![Figure 1. Basic topology of dual inverter-fed open-end winding induction motor drive with two separate dc-link sources [3].](image)

III. FEATURES OF THE SCHEMES OF SYNCHRONIZED PWM

In order to avoid asynchronism of conventional space-vector modulation, a novel method of synchronized PWM [13],[14] can be used for control of each inverter in dual inverter-fed traction drives.

Figs. 2 - 3 present switching state sequences of standard three-phase inverter inside the interval 0°-90°. It illustrates schematically basic continuous (CPWM, Fig. 2) and discontinuous (DPWM, Fig. 3) versions of space-vector
PWM, which are used typically in adjustable speed drives.

The upper traces in Figs. 2 – 3 are switching state sequences (in accordance with conventional designation [13]), then – control signals for the cathode switches of the phases \(a1, b1, c1\) (\(a2, b2, c2\)) of each inverter. The lower traces in Figs. 2 - 3 show the corresponding quarter-wave of the line output voltage of inverters. Signals \(\beta_j\) represent total switch-on durations during switching sub-intervals \(\tau\), signals \(\gamma_j k\) are generated on the borders (Fig. 2) or in the centers (Fig. 3) of the corresponding \(\beta\). Widths of non-

equal in this case to one half of the switching interval (subcycle) \(\tau\) [1].

In the case, when the two dc-link voltage sources have the same voltage (\(V_{dc2} = V_{dc1}\)), the resulting voltage space-vectors are equal to the space-vector patterns of conventional three-level inverter [1],[3],[7]. The phase voltage \(V_{ai}\) of the dual inverter-fed drive with two insulated

\begin{table}[h]
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
Control (modulation) parameter & Conventional schemes of vector PWM & Proposed methods of modulation \\
\hline
Operating & max. parameter & Operating & max. \(F\) and \(V_a\) & Operating & max. fundamental frequency \(F\) and \(V_a\) \\
\hline
Modulation index or \(m\) & \(F/\tau\) & \(F/\tau\) & \(F/\tau\) \\
\hline
Duration of sub-cycles \(\tau\) & \(\pi\) & \(\pi\) & \(\pi\) \\
\hline
Center of the \(\beta\)-signal \(\alpha_k\) (angle in deg.) & \(\pi(\beta-1/2)\) & \(\pi(\beta-1/2)\) & \(\pi(\beta-1/2)\) \\
\hline
\end{tabular}
\end{center}
\end{table}

I. PWM METHODS

- For the case of \(\alpha_k = 0\), the resulting voltage in the zone of overmodulation is based on the following coefficients (coefficients) of overmodulation \(K_{ov2}\) (1) and \(K_{ov3}\) (2), providing smooth pulses dropping process in this zone:

\(K_{ov2} = 1 - (F - F_{ov2})/(F_m - F_{ov2})\) \hspace{1cm} (3)

Typical control scheme for the inverter with the maximum modulation index for standard V/F control of dual three-phase drive system during overmodulation is based on two-stage strategy with two threshold frequencies \(F_{ov1} = 45.35\) Hz (modulation index \(m = 0.907\) in this case) and \(F_{ov2} = 47.6\) Hz \((m = 0.952)\) for the drive systems with the maximum fundamental frequency equal to 50 Hz [8],[13],[15]. So, control process consists from two basic

TABLE I. BASIC PARAMETERS OF PWM METHODS

<table>
<thead>
<tr>
<th>Control (modulation) parameter</th>
<th>Conventional schemes of vector PWM</th>
<th>Proposed methods of modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating & max. parameter</td>
<td>Operating & max. (F) and (V_a)</td>
<td>Operating & max. fundamental frequency (F) and (V_a)</td>
</tr>
<tr>
<td>Modulation index or (m)</td>
<td>(F/\tau)</td>
<td>(F/\tau)</td>
</tr>
<tr>
<td>Duration of sub-cycles (\tau)</td>
<td>(\pi)</td>
<td>(\pi)</td>
</tr>
<tr>
<td>Center of the (\beta)-signal (\alpha_k) (angle in deg.)</td>
<td>(\pi(\beta-1/2))</td>
<td>(\pi(\beta-1/2))</td>
</tr>
</tbody>
</table>

IV. OVERMODULATION CONTROL OF DUAL INVERTER-FED SYSTEM WITH TWO DC SOURCES

Synchronous symmetrical control of the output voltage of each inverter of the dual inverter-fed drive system in accordance with algorithms of synchronized PWM provides
parts in the overmodulation zone.

During the first control stage of the overmodulation zone, between the fundamental frequencies F_{ov1} and F_{ov2}, a smooth linear increase of the β-parameters until the width of $\beta_1 = \pi$ is observed for inverter with the maximum modulation index, with simultaneous smooth reduction of all notches λ until zero at the F_{ov2} frequency. The second sub-zone of the drive control during overmodulation, between the second threshold frequency F_{ov2} and the maximum fundamental frequency F_m ($F_m > F > F_{ov2}$), is characterized by a smooth decrease until zero of the widths of all γ-parameters of the inverter with higher modulation index.

Overmodulation PWM Control of Dual Inverter-Fed System with Equal Voltages of DC Sources

In order to provide the rated ratio P_1/P_2 between the powers of two dc sources with equal voltages for scalar V/F control of dual inverter-fed drives, it is necessary to provide a simple correlation between modulation indices m_1 and m_2 of the two inverters and the rated power ratio in accordance with (5) [12]:

$$m_1 = \frac{P_1}{P_2}$$

As an illustration of the overmodulation control of dual inverter-fed system with equal voltages of dc sources ($V_{dc1} = V_{dc2}$), Fig. 4 and Fig. 5 present its basic voltage waveforms (the pole voltages V_{a1}, V_{a2}, line-to-line voltages V_{a1b1}, V_{a2b2} of the two inverters, and the phase voltage V_{as} (with its spectrum)) for unbalanced power distribution between dc-links ($P_1 = 0.5P_2$, $m_1 = 0.5m_2$ in this case), controlled in the first part of the zone of overmodulation ($F < F_{ov2}$: $F = 46$ Hz (Fig. 4), and $F = 47$ Hz (Fig. 5)) in accordance with discontinuous synchronized PWM. The average switching frequency of each inverter is 900 Hz.

Fig. 6 and Fig. 7 present basic voltage waveforms (with spectral characteristics of the phase voltage V_{as} of unbalanced three-phase system with synchronized pulselwidth modulation ($V_{dc1} = V_{dc2}$, $P_1 = 0.5P_2$, $m_1 = 0.5m_2$), corresponding to the second control sub-zone at the highest fundamental frequencies ($F = 48$ Hz, $m_2 = 0.96$ (Fig. 6), and $F = 49$ Hz, $m_2 = 0.98$ (Fig. 7)). The average switching frequency of inverters is 900 Hz. And, in particular, Fig. 8 shows the same parameters of the system at the maximum fundamental frequency $F_m = 50$ Hz. Modulation indices of two inverters in accordance with (5) here are: $m_1 = 1$, $m_2 = 0.5$.

Both in the first and the second parts of the
overmodulation control zone of dual inverter-fed drives with synchronized PWM the spectra of the phase voltage of the induction motor contain only odd harmonics (without triplen harmonics), for any ratios (integral or fractional) between the switching and fundamental frequencies. These PWM algorithms provide also smooth shock-less pulses-ratio changing during the whole control range.

\[\frac{m_1 V_{de1}}{m_2 V_{de2}} = \frac{P_1}{P_2} \]

In particular, in the case of equal power distribution between the two dc sources (P1 = P2), it is necessary to provide a simple linear correlation between magnitudes of dc voltages and modulation indices of the two inverters:

\[m_1 V_{de1} = m_2 V_{de2} \]

If, as an example, \(V_{de1} = 0.7 V_{de2} \) in this case \(m_2 = 0.7 m_1 \).

For illustration of this control mode in the zone of overmodulation, Fig. 9 - Fig. 13 present the pole voltages \(V_{a1}, V_{a2} \), line-to-line voltages \(V_{a1b1}, V_{a2b2} \) of the two inverters, and the phase voltage \(V_{as} \) (with its spectrum) of the dual inverter-fed drive with equal power distribution (\(P_1 = P_2 \)) between the two dc sources with different voltages (\(V_{dc1} = 0.7V_{dc2} \)). Curves in Fig. 9 and Fig. 11 correspond to continuous version of synchronized PWM, and waveforms in Figs. 10, 12 and 13 correspond to discontinuous synchronized PWM. The average switching frequency is 1.05 kHz, and the fundamental frequency \(F = 46 \) Hz for the control regimes, presented in Figs. 9 and 10, \(F = 48 \) Hz for the control modes, presented in Figs. 11 and 12, and \(F = 50 \) Hz for control regime, presented in Fig. 13.

Fig. 14 presents the calculation results of Weighted Total Harmonic Distortion factor (WTHD) for the phase voltage \(V_{as} \) (averaged values of \(WTHD = \left(\frac{1}{V_{as}} \right) \sum_{k=2}^{1000} V_{as} V_{k}^2 \)) in dual inverter-fed drive with continuous (CPWM) and discontinuous (DPWM) schemes of synchronized pulsewidth modulation for the system with equal (\(P_1 = P_2 \)) power distribution between the two dc sources with different magnitudes of dc voltages (\(V_{dc1} = 0.7V_{dc2} \)). The average switching frequency for each modulated inverter is 1.05 kHz; the control mode corresponds in this case to standard scalar V/F control.

A. Overmodulation PWM Control of Dual Inverter-Fed System with Non-Equal Voltages of DC Sources

For the dual inverter-fed drive with different voltages of the dc-links, in order to provide the rated power ratio P1/P2 between two power sources (for scalar V/F control mode), it is necessary to provide the corresponding correlations between magnitudes of dc voltages, modulation indices of the two inverters and the rated power ratio in accordance with (6):

\[m_1 V_{dc1} = m_2 V_{dc2} \]
Figure 10. Pole voltages V_{a1} and V_{a2}, line voltages V_{a1b1} and V_{a2b2}, and phase voltage V_a (with its spectrum) for the system with discontinuous synchronized PWM ($F=46Hz$, $V_{dc1}=0.7Vdc2$, $P_1=P_2$, $m_1=0.92$, $m_2=0.64$).

Figure 11. Pole voltages V_{a1} and V_{a2}, line voltages V_{a1b1} and V_{a2b2}, and phase voltage V_a (with its spectrum) for the system with continuous synchronized PWM ($F=48Hz$, $V_{dc1}=0.7Vdc2$, $P_1=P_2$, $m_1=0.96$, $m_2=0.67$).

Figure 12. Pole voltages V_{a1} and V_{a2}, line voltages V_{a1b1} and V_{a2b2}, and phase voltage V_a (with its spectrum) for the system with discontinuous synchronized PWM ($F=48Hz$, $V_{dc1}=0.7Vdc2$, $P_1=P_2$, $m_1=0.96$, $m_2=0.67$).

Figure 13. Pole voltages V_{a1} and V_{a2}, line voltages V_{a1b1} and V_{a2b2}, and phase voltage V_a (with its spectrum) for the system with discontinuous synchronized PWM ($F=50Hz$, $V_{dc1}=0.7Vdc2$, $P_1=P_2$, $m_1=1.0$, $m_2=0.7$).
Novel method of synchronized space-vector modulation, applied for overmodulation control of dual inverter-fed open-end winding motor drives with two insulated dc-links, allows both continuous phase voltage synchronization and required sharing of the power between two dc sources in the zone of overmodulation.

Control process is characterized in this case by smooth shock-less pulses ratio changing. The spectra of the motor phase voltages do not contain even harmonics and sub-harmonics for any ratio between the switching and fundamental frequencies, which is especially important for the medium power/high power systems.

The described method of synchronous pulselwidth modulation can also be disseminated for control of other structures and topologies of multilevel converters and drives both in the linear modulation range and in the zone of overmodulation.

REFERENCES