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Abstract— Based on the fact that spectral shaping of digital 

data signals is obtained by encoding and that there exist 
spectrally equivalent digital filters, the method of Justesen was 
applied to derive digital filters that approximate the power 
spectral density (p.s.d.) of a code. The (2,2,3) code, which 
belongs to the class of  FAS (Finite Autocorrelation Sequence) 
codes showing a limited number of values of the 
autocorrelation function that are not zero, was used as an 
example. The spectral properties of the (2,2,3) code are 
thoroughly investigated in terms of autocorrelation function 
values and p.s.d. both as a function of normalised frequency fn 
and the probability of a mark p. The prediction coefficients for 
the digital filter implementations are derived using 
approximations by Markov processes of the third, fourth and 
fifth order. The resulting spectra are compared with those of 
(2,2,3) code. 

 
Index Terms—Codes, Digital filters, Linear predictive 

coding, Markov processes, Spectral analysis 

I. INTRODUCTION 
The p.s.d. of a line code can be made equivalent to 

squared magnitude of the transfer function of a linear causal 
filter [1]. It is well known that 

2( ) ( )xW f H fη= ⋅  (1) 
where η  is the unilateral p.s.d. of the white noise process 
applied at the input of the filter with transfer characteristic 

( )H f  and ( )xW f  is the p.s.d. of the output. 
A WSS random process ( )x k  may be represented as the 

output of a causal and causally invertible linear system 
excited by a white noise process as shown in figure 1. 

 
Figure 1. Generation of x(k) from white noise. 

 
The z-transform of the autocorrelation sequence ( )xR k is 

given by 

( ) ( ) k
x x

k
W z R k z

∞
−

=−∞

= ∑  (2) 

One can assume [2] that the p.s.d. of the WSS random 
process ( )x k is a rational function expressed as 

1

1 21

( ) ( )( )
( ) ( )x

B z B zW z r z r
A z A z

η
−

−= < <   (3) 

with 1 21, 1r r< > . The polynomials ( )B z and ( )A z have 
roots that fall inside the unit circle in the z-plane. The output 

( )x n can be expressed [2] as 

0
( ) ( ) ( )

k
x n h k w n k

∞

=

= −∑   (4) 

Then, the linear filter ( )H z that is equivalent to a line 
coded signal ( )x n  produced by a random input sequence, if   

( )w n is rational,  can be expressed [2] as 
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where 0a was assumed to be 1 and that all zeros of ( )A z are 
outside the unit circle. 

The process described by the filter with the transfer 
function ( )H z is termed Autoregressive Moving Average 
(ARMA) and is illustrated in figure 2. The linear system 
described by the rational system function ( )H z satisfies the 
difference equation: 

0 0
( ) ( )

N N

j j
j j

a x n j b w n j
= =

− = −∑ ∑
  (6) 

In continuous representation this is written as 

0 0

N N

j t j j t j
j j

a X b W− −
= =

=∑ ∑   (7) 

tW  is a random variable in the sequence 
__
W of 

uncorrelated random variables 
__

1 1, , , ,t t tW W W W− += L L   (8) 
The term 0 tb W  is uncorrelated with the past and may be 

identified [2] as the prediction error 

0
ˆ

p t t te X X b W= − =  (9) 
Then 

0 1

ˆ( )
N N

j t j p j t j t j
j j

a X e b X X− − −
= =

= + −∑ ∑  (10) 

As  
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0 1a = , 

1 1

ˆ ˆ( )
N N

t j t j t t j t j t j
j j

X a X X X b X X− − −
= =

+ = − + −∑ ∑  (11) 

and 

1 1

ˆ ( )
N N

t j t j j j t j
j j

X b X b a X− −
= =

= − + −∑ ∑   (12) 

As ( )W z has no real zeros, the numerator of ( )H z , 
which is ( )B z , does not have any zeros on the unit circle. 

II. RATIONAL POWER SPECTRA 
It was assumed [2] that the data to be transmitted belong 

to a finite alphabet 1 2{ , , }IB b b b= K and are i.i.d. They are 
converted into a continuous real-valued function of time as a 
one-to-one mapping from the input information assumed 
signal to be a sequence of i.i.d. random variables 
__

1 1, , , ,k k kX X X X− +=L L  (13) 
to the ensemble of output discrete signals that constitute a 
stationary ergodic random sequence  

_

1 1, , , ,k k kY Y Y Y− += L L  (14) 
They satisfy the requirement of exhibiting a certain power 

spectrum with prescribed shape ( )YW f . 
The intermediate conversion is subjected to two 

restrictions [2] placed on the statistics of the encoded 
sequence: 
1. the probability distribution of each iY has a constant value 

( )Y kp v . 

2. the p.s.d. of coded sequence 
__
Y equals a given function 

( )YW f . 

The coded process 
__
Y is assumed to be zero-mean, i.e. 

[ ] 0nE Y =  (15) 
A relation must be found relating the p.s.d. ( )YW f and the 

entropy ( )H Y of 
__
Y , which may be written as 

1, 2,( ) ( )n n nH Y H Y Y Y− −= L  (16) 

To simplify things, the past in rel. (11.8) is replaced by a 
function Φ  of the past, and we have 

1, 2,

1, 2,

( ) ( ) ( )

[ ( )]

n n n

n n n

H Y H Y Y Y H Y

H Y Y Y

− −

− −

= ≤

= Φ

L

L
 (17) 

As the entropy of the left-hand side in (17) is smaller, 
taking into account the fact that a sequence that can be 
predicted with small prediction error exhibits small entropy 
in opposition with a sequence that cannot be predicted and 
has a large entropy, the logical idea is to use as the function 

Φ a predictor for 
__
Y . In other words, the function Φ  should 

provide an estimate of nY with sufficient accuracy. 

III. LINEAR PREDICTION CODING 
Given a set of past samples of the output signal 

1 2, ,n nY Y− − L  and using linear prediction coding, n̂Y of nY ,  
the predictor for  the present sample value of the signal is 

given by 

1
n̂ j n j

j
Y h Y

∞

−
=

= ∑  (18) 

The prediction error ( )e n is defined as 
ˆ( ) n ne n Y Y= −  (19) 

This form of prediction is referred to as one-step forward 
linear prediction. The prediction coefficients jh are usually 
optimised by minimising the mean-square value of the 
prediction error ( )e n . The predictor is then denoted as a 
LMMSE (linear minimum mean-square error) estimator. 

The LMMSE estimation is orthogonal, i.e. 
( ) 0 0n n jE e x j−⋅ = >  (20) 
Combining equations (18) and (19) we get 
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This results in Wiener-Hopf equation 

1
( ) ( ) 1, 2,j Y Y

j
h R k j R k k

∞

=

− = =∑ L  (22) 

The LMSSE estimator can either be approximated using 
rel. (18) and restricting the sum to a finite number of terms 
or be calculated accurately, if the power spectrum can be 
expressed in a rational form, which is the case here. 

 Substituting the function Φ  in rel. (17) with the 
LMMSE predictor ˆ

tX , one has 
ˆ( ) ( | )tH X H X X=  (23) 

So, Markov shaping represents the equivalent of an 
ARMA process as opposed to an autoregressive AR 
(feedback only) or a moving average MA (feedforward 
only) process. 

So far, there is only one practical procedure for devising a 
source with prescribed power spectrum introduced by 
Justesen [2]. We shall apply the method of Justesen to find 
the equivalent filter that produces a spectral shaping similar 
to the FAS coding. 

IV. SPECTRUM SHAPING WITH FAS CODES 
The quantity  

2

1

( )
(0)k

R kk
R

∞∆

=

∆ = − ∑  (24) 

can be used as an indicator of D.C. suppression [3] and 
moreover, as a design criterion. 

To cope with the infinite series involved in (24) a new 
restriction was added, namely to exclude the code with an 
infinite number of non-zero ( )R k . What we are left with are 
termed FAS (Finite Autocorrelation Sequence) codes and 
they satisfy 

( ) 0R k for k M= ≥  (25) 
where M is an integer. 

Here FAS stands for Finite Autocorrelation Sequence and 
this design method was introduced by Dieuliis and Preparata 
[3]. The signaling scheme is supposed to be modeled by a 
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Mealy automaton or FSM (Finite State Machine). The state 
transition probability matrix is a stochastic one 

ijπ=Π   (26) 

ijπ  being the transition probability from state iS  to state 

jS .In [3] it was assumed the existence of a function 
: S Zσ → , where Z is the set of integers so that 
[ ( , )] ( ) [ ( , )]g s b s h s bσ σ γ= +  (27) 

for every , ns S b B∈ ∈  and w O∈ .Here w is an output m-
tuple composed of ternary symbols as 

1 2{ , , }mw w w w= L  (28) 
This allows the implementation of the encoder based on a 

digital counter and the resulted code is denoted as counter 
encodable. And can be specified as ( , , )n m N , where the 
input digits are coupled into n-tuples, the output digits into 
m-tuples and the number of states of the encoder automaton 
is N . The content of the counter is the value of the current 
state ( )sσ . The states are labeled so that 

( )is iσ =  (29)  
and the output functions { }ih should satisfy an odd-
symmetry law such as 

1( ) ( )n n
i i i N iw h B w h B− +∈ ⇔ − ∈ , for 1,2,i N= K  (30)  

which results in a balanced character of the code and the 
process has zero mean. 

The behavior of the state transition probability matrix 
Π when it is raised to a n-th power which nears infinity is 
of importance in describing the p.s.d. One way to calculate 
[5] ( )R k  is 

( )( )R k trace= kD ×Π × Z  (31) 

where D is the matrix of stationary probabilities in diagonal 
form and Z is the correlation matrix [5]. Let 

lim
n

∞

→∞
= nΠ Π  (32) 

As known, [5] ∞Π has identical rows containing the 
stationary probabilities. Choosing Π as a stochastic matrix 
with identical rows results in 

∞Π = Π  (33) 
Since a channel input codeword is 1 2( , , )i i i ina a a a= L and 

the attached encoder state is ( )is , one can state that the pair 
(0)

0( , )s a completely determines the next state (1)s . As 
∞=Π Π , this implies that the transition probability from 

state j to state i equals the stationary probability of state i, 
i.e. ji iπ π= .  

One can conclude that the following state (2)s and the next 
ones are statistically independent of (0)s , i.e. any state 

( ) , 2hs h ≥  is statistically independent of (0)s  or any states 
separated by at least one state are statistically independent. 
Then, 

0 0[ ] [ ] [ ] 0i hj i hjE a a E a E a⋅ = ⋅ =  (34) 

as 0[ ] [ ] 0i hjE a E a= =  (35) 
since the code is balanced and counterencodable. This 
results in 

( ) 0R k =  for 2k m≥  (36) 

taking into account that each state outputs m ternary digits. 

V. SPECTRAL CHARACTERIZATION OF (2,2,3) CODE 
The (2,2,3) code was designed by Dieuliis and Preparata 

and is described by the codebook in Table I.  
As the code is balanced, then for every word w , its 

complement w−  must also exist. As the conditions (27), 
(29) and (30) must be met, it is obvious that if a code word 
w  is met in state 1, its complement w−  must be met in 
state 3 ( 1 3N i− + =  in this case). The code words found in 
state 2 will include their complements as well, since if 

2, 1 2i N i= − + =  for 3.N =  
 

TABLE I.CODING RULES OF (2,2,3) CODE 
State 
Input 1s  

Output/Next state 
2s  

Output/Next state 
3s  

Output/Next state 
00 1/ s+ −  2/ s+ −  1/ s− −  
01 3/ s+ +  2/ s− +  3/ s− +  
10 20 / s+  30 / s+  20 / s−  
11 20 / s+  10 / s−  20 / s−  

 
The codes with zero disparity ( ( ) 0wγ = ) will determine a 

conservation of the state, that is from state i to state i.   
The words with disparity one ( ( ) 1wγ = ) will determine a 

jump into the adjacent state, i.e. from state i to state 1i + , 
while for disparity two. e.g. ( ) 2wγ = − , a jump into the next 
adjacent state, i.e. from state i to state 2i −  is taken. 

 
Figure 2. 3D representation of coding factor for (2,2,3) code. 

 
The p.s.d. of the (2,2,3) code was determined as 

2 3 4 5 6 7
n

2 3 4 5 6
n

2 3 4 5 6 7
n

2

C(f ,p) (p(14 - 66p  147p  - 186p   148p  - 73p   20p  - 4p   

(7p - 41p   110p  - 148p   104p  - 32p ) cos 2 f   

(- 12  55p - 98p  83p  - 6p  - 46p   32p  - 8p )cos 4 f   

(2 - 17p  51p  - 

π

π

= + + + +

+ + ⋅ +

+ + + +

+ 3 4 5
n

2 3 4 5 6 2
n

2
n

72p   52p  - 16p )cos 6 f   

(p - 7p   19p  - 25p   16p - 4p )cos[8 f]) sin f )/

 (1-2p  2p   (-1  2p)cos 4 f )

π

π π

π

+ +

+ + ⋅

+ + +

 (37) 

A 3D representation of the coding factor of (2,2,3) code is 
given in figure 2. 

Figure 3 presents the coding factors of (2,2,3) and bipolar 
No.1 code for the equiprobable case ( 0.5p = ).  

An increase of the energy of the (2,2,3) code can be 
observed, as the coding elements contribute more energy to 
the signal (the combination 00 is not used). 
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VI. DETERMINING THE PREDICTOR VALUE FOR (2,2,3) CODE 
Using the MPR program written in MATHEMATICA, 

the values of the autocorrelation function are obtained as 
2

2 3 4 5

2 3 4 5

2 2 3 4

3 2

2 2 3 4 5

2 2

(0) 2

(1) ( 4 16 40 51 28 4 ) / 2

(2) (4 30 83 109 64 12 ) / 2

(3) (1 2 ) ( 4 16 19 7 ) / 2

(4) (1 2 ) (2 4 )

(5) (1 2 ) ( 4 16 20 8 2 ) / 2

(6) (1 2 ) (2 8 9

R p p
R p p p p p p
R p p p p p p
R p p p p p p
R p p p p
R p p p p p p p
R p p p p

= −

= − + − + − +

= − + − + −

= − − + − + −

= − − +

= − − + − + − +

= − − + − 4 54 )p p+

(38) 

For p = 0.5 they are  
(0) 3 / 4 (1) 10 / 32 (2) 1/16R R R= = − = − , (39) 
( ) 0, 3R k k= ≥  

 
Figure 3. Coding factors of (2,2,3) and AMI code for p=0.5. 

 
We will approximate it by a third-order Markov process 

[2] that exhibits the same values of the autocorrelation 
function for 4≤k . The Wiener –Hopf equation can be 
written as 

1 2 3( 1) ( 2) ( 3) ( )h R k h R k h R k R k− + − + − =  

1 2 3

1 2 3

1 2 3

1 (0) ( 1) ( 2) (1)
2 (1) (0) ( 1) (2)
3 (2) (1) (0) (3)

k h R h R h R R
k h R h R h R R
k h R h R h R R

= → + − + − =

= → + + − =

= → + + =

 (40) 

In matrix form  

1 2 3

(0) (1) (2)
[ ] ( 1) (0) (1) [ (1) (2) (3)]

( 2) ( 1) (0)

R R R
h h h R R R R R R

R R R

 
 − = 
 − − 

(41) 

or

1 2 3

1 2 3

1 2 3

3 5 1 5
4 16 16 16

5 3 5 1
16 4 16 16
1 5 3 0

16 16 4

h h h

h h h

h h h

 − − = −

− + − = −



− − + =

 

Solving it results in 
 

1 2 3330 / 533, 18 / 41, 125 / 533h h h= − = − = − . (43) 
The predictor is illustrated in figure 4 and is given by 

1 2 3
330 18 125ˆ
533 41 533t t t tX X X X− − −= − − −  (44) 

The spectrum results as 
2

2 4 6
3

330 18 125( ) 1
533 41 533

j f j f j f
xW f e e eπ π π

−
− − −= + + +  (45) 

An approximation by a fourth-order Markov process 
results in 

1 2 3 4
2995 393 265 859ˆ
4512 752 752 4512t t t t tX X X X X− − − −= − − − − (46) 

and the spectrum is given by 
2

2 4

4
6 8

2995 3931
4512 752( )

265 859
752 4512

j f j f

x
j f j f

e e
W f

e e

π π

π π

−
− −

− −

+ + +
=

+ +
 (47) 

An approximation by a fifth-order Markov process results 
in 

1 2 3

4 5

25555 42623 245ˆ
36811 73622 562

21829 5885
73622 36811

t t t t

t t

X X X X

X X

− − −

− −

= − − −

− −
 (48) 

and the spectrum is given by 
2

2 4

5
6 8 10

25555 426231
36811 73622( )

245 21829 5885
562 73622 36811

j f j f

x
j f j f j f

e e
W f

e e e

π π

π π π

−
− −

− − −

+ + +
=

+ +
(49) 

A comparison of the coding factors C(f, 0.5) of the (2,2,3) 
code of Dieuliis and Preparata, as given by (37) and their 
substitutes 3 ( )xW f , 4 ( )xW f and 5 ( )xW f  found above is 
illustrated in Fig.5. 

Increasing the order of the corresponding Markov process 
results in a better approximation of coding  factor.  

An exact solution cannot be obtained, as the code is not 
counterencodable. This explains also the presence of the 
D.C. component. 

 
TABLE II CODING TABLE OF NEW CODE 

State 1 2 3t t tX X X− − −  ( )jsζ  

0s  (+1,+1,-1) +191/533 

1s  (+1,-1,+1) +439/533 

2s  (+1,-1,-1) -29/533 

3s  (-1,+1,+1) +29/533 

4s  (-1,+1,-1) -439/533 

5s  (-1,-1,+1) -191/533 

 
Based on rel. (11.43) one can see that the combinations of 

like symbols are excluded as 
 

3

1

330 18 125 589 1
553 41 533 533j

j
h

=

= + + = >∑  

Figure 4. Recursive filter used for prediction. 
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Figure 5. Coding factors of FAS (2,2,3) substitutes. 

 
The states are assigned as shown in Table 2, assuming the 

linear predictor ˆ
tX  is a function ( ( ))S tζ . One can see that 

the code is not, as there is no proper relation between the 
current value of the state and RDS (see rel. (27)).  

The same is valid for the arrangements based on fourth-
order and fifth-order Markov processes. 

VII. CONCLUSIONS 
We applied Justesen method to derive digital filters that 

approximate the power spectral density (p.s.d.) of the 
counterencodable (2,2,3) code using fourth-order and fifth-
order Markov processes. 

The obtained substitutes show no proper relation between 
the current value of the state and RDS (Running Digital 
Sum), as with (2,2,3) code, but they can be used to shape the 
spectrum of a digital data string. 

APPENDIX  
A program was written in MATHEMATICA for solving 

the Wiener Hopf equation for a 5-th order predictor. 
0 : 3 / 4
1: 5 /16
2 : 1/16

R
R
R

=
= −
==

 

3 : 0
4 : 0
5 : 0

R
R
R

=
=
=

 

  
Solve[{h1,h2,h3,h4,h5}.
  {{R0,R1, R2, R3,R4},{R1,R0,R1,R2,R3},
   {R2,R1,R0,R1,R2},{R3, R2, R1,R0,R1},
   {R4,R3,R2,R1,R0}} == {R1,R2,R3,R4,R5},
   {h1,h2, h3,h4, h5}]

 

 
{{h1 25555/36811,  

      h2  - 42623/73622, 
      h3  - 245/562, 
      h4  - 21829/73622,
      h5  - 5885/36811}}

     - →
→
→
→
→
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