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Abstract—The test compaction is one of most important 

requirement regarding the large scale integration (LSI) testing. 
The overall cost of a VLSI circuit’s testing depends on the 
length of its test sequence; therefore the reduction of this 
sequence, keeping the coverage of error prone points, will lead 
to a reduction of used resources in the testing process. This 
problem is NP-complete. Consequently an optimal algorithm 
doesn’t have applicability in practice. In this paper we describe 
an evolutionary algorithm (GATC) and we introduce the term 
of compaction factor (cf), i.e. the “expected” percentage of 
compacted test sequence. GATC provides in praxis better 
results than a greedy approach (GR) for many configurations. 
This improvement comes from the freedom to merge randomly 
pairs of compatible tests for different candidates to solution 
and keeps the ones with more “Don’t care” positions, thus 
there is an increased probability to find for them compatible 
tests in the next stage. Also the C++ implementation was 
optimized, using compact data structures and the Standard 
Template Library. 
 

Index Terms—Evolutionary Algorithms, Digital Circuit 
Design, Test Compaction Problem, Set Coverage Problem, Test 
Generation, Greedy Algorithm, Optimization, Don’t Care 
Value 

I. INTRODUCTION 
The overall testing process is very important for a circuit 

and one issue is minimizing the cost of testing by finding 
effective test sequences with a minimal size, which cover all 
faults (see e.g. [10, 13]). The size of the test sequence 
directly affects the overall cost of the circuit testing. The test 
compaction is the activity to reduce the length of this 
sequence, by keeping its effectiveness. This will lead to a 
testing time which consumes no more than necessary time 
resources. In praxis, the test compaction for a VLSI circuit 
is done in two ways: dynamically and statically. The 
dynamic test compaction is performed simultaneous with the 
test generation and the static test compaction is used after 
the test generation, as an optimization step. 

 

In this paper we propose an evolutionary approach for the 
Test Compaction Problem, which could be used, also 
combined with other techniques, in the static compaction 
phase. Recently, EAs have been successfully applied to 
several problems in VLSI CAD (see e.g. [8, 9, 20, 25]). For 
specifically test compaction issues there are also proposed 
more methods (see e.g. [10, 13]). We transform the general 
problem in a particular one and provide the formal 
framework in Section 2: the problem domain, description of 
optimal and greedy methods. Based on experimental results, 
we concluded that the Greedy method leads to very good 

quality results. In section 4 we present an evolutionary 
algorithm, which provides in the most cases better results as 
Greedy. For test generation we use a test generator module, 
capable to produce artificial benchmarks with an expected 
compaction rate (the expected percentage of the optimal 
compacted sequence, which covers the input sequence). As 
showed in our experiments, this factor influences the results 
and could be used to develop different kind of methods 
(from both design and implementation point of view).  The 
paper contains 3 tables, 5 figures and an end section with a 
conclusion and various ideas to continue the research. 

II. PROBLEM DOMAIN AND CLASSICAL 
APPROACHES 

Let us consider a set of test sequences T = {S1, S2, …, Sn} 
detecting (covering) the set of faults {f1, f2, …, fm} of a 
sequential circuit. Every test sequence Si = {v1, v2, …, vii}, i 
= 1, …, n is an ordered set of Li test vectors v1, v2, …, vLi, 
where Li is the length of Si. A fault fi within a sequence Sj 
has the detection cost dij equal to the number of vectors from 
the beginning of the sequence until fi becomes detected in Sj. 
Test compaction problem is to find a collection of 
subsequences, i.e. subsets of vector sequences, so that all 
faults in F are covered and the test length of the collection is 
a minimum. This problem can be reformulated as a set 
covering problem, which is NP-complete. Further we will 
reformulate and specialize it, using a concrete number of 
faults. 

 

We represent the tests as strings, which contain only 
characters from a set S with cardinal number 5 and one of 
this character is ‘Don’t Care’ (X). This means that it is 
compatible with any other character from S. We consider 
that two characters are compatible if they are the same or 
one of them is Don’t Care. For example, the tests 
t1=10ZX0XU and t2=X0Z10UU are compatible because all 
same position pairs from them are compatible (1-X, 0-0, Z-
Z, X-1, 0-0, X-U and U-U). Two compatible tests can be 
reduced to one test, by using a merge operation on every 
position in both of them: one character merged to it gives 
itself, one character merged to X gives this character. For 
our example: Merge (t1, t2) = 10Z10UU. The problem is to 
reduce a given sequence of tests to a sequence of minimal 
length, by successively applying the Merge operation. 

An optimal method has to explore the whole space of 
solutions and pick one with minimal length. This exhaustive 
search has an exponential complexity and no applicability in 
practice; it can process only very small instances of the 
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problem. Other approach is a Greedy one, by applying 
repeatedly the Merge operation on first found compatible 
pair of tests and modifying the current sequence. This 
algorithm is polynomial and can cope with large data sets in 
an acceptable execution time. From our experiments results 
that, for relative small data (various parameters: 25 to 30 
tests, every with a length between 20 and 40), the greedy 
algorithm leads in the most cases to the same result as the 
optimal one. From 625 cases, only in 10 cases we obtained 
with Greedy a sensible lower quality of results and this is 
only 1.6%. For this experiment we generated artificial input 
sequences, which had a compaction rate of around 50%. 
This allowed us to observe the behavior of two methods for 
sequences which are ‘compressible’ and conclude that the 
Greedy method is a powerful instrument regarding both 
quality of the results and execution time. 

III. PREVIOUS APPROACHES 
This problem is very similar to the well-known Set 

Coverage Problem. This is contained in the list of 21 
classical NP-complete problems, for which Richard Karp 
demonstrated that they are included in the class of NP-
complete problems. It has a very wide area of applicability, 
in domains like: wireless sensor networks (k-Sensor 
Coverage Problem, see e.g. [2]), urban systems (see e. g. 
[25]), VLSI Test Coverage (see e.g. [14, 17]), discrete 
geometry (e.g. image processing, covering for hyper cubes).  

 

Some useful ideas regarding the test compaction process 
are presented in [14], where the authors introduce a method 
based on fault simulation, and they present some heuristics 
for reducing the simulation effort. The test sequences are 
fully specified, generated by a sequential ATPG and the 
proposed methods produce a test sequence which contain 
lots of Don’t Cares (Xs) without losing stuck-at fault 
coverage of the original test sequence. Many greedy 
approaches with an accurate analysis for the (k-) Set 
Coverage Problem were developed (see e.g. [15]) and were 
proposed some formal different evolutionary approaches for 
variations of the problem (see e.g. [1, 17]).  

IV. EVOLUTIONARY ALGORITHM 
We use a genetic algorithm, which transforms the 

population along a number of generations. Every individual 
will be a sequence of tests, which is overall compatible with 
the input sequence and thus a possible solution. In a specific 
generation, the next population is constructed on the current 
one, by preserving a part of individuals and filling the rest 
with copies of some of the best individuals. The fitness-
function in this stage is defined as the overall number of 
Don’t Cares in sequence. A higher value of this function for 
an individual increases the probability to find afterwards 
compatible pairs. At the end, every individual in population 
will be compacted by using the greedy algorithm. 

A. Overview of Genetic Algorithms 
A Genetic Algorithm (GA) is an optimization method 

with simple operations based on the natural selection model 
[26]. The genetic algorithms have been applied to hard 
optimization problems including VLSI layout optimization, 
boolean satisfiability and the Set Cover Problem (see e.g. [9, 

16, 17, 25]). There are four main distinctions between GA-
based approaches and traditional problem-solving methods: 

a) GAs operate with a genetic representation of 
potential solutions, not the solutions themselves. 

b) GAs search for optima of a population of 
potential solutions and not a single solution (the 
genetic operators alter the composition of 
children). 

c) GAs use evaluation functions (fitness), no other 
auxiliary knowledge such as derivative 
information used in the conventional methods. 

d) GAs use probabilistic transition rules (not 
deterministic rules) and various parameters 
(population size, probabilities of applying the 
genetic operators, etc.) 

 
For a specific problem, it is very important to use related 

genetic operators, which preserve the good traits from the 
parents, but are also able to bring improvements in the 
resulting children. The initialization step and the parameter 
settings are also very significant. Often, the GAs are used 
mixed with another programming techniques, for example 
greedy for generating good start individuals. In this case 
they are called hybrid GAs. 

 
ALGORITM_GA 
   Initialise_Random_Population() 
   While (not terminal case) Execute 
         ApplyGeneticOperators(); 
     CalculteFitnessForAllIndividuals(); 
     UpdatePopulation(); 
   End_While 
END_ALGORITHM_GA 

 
Figure 1. Pseudo code for a Genetic Algorithm. 

 
The terminal case could be a specific condition which 

should be satisfied from the population or from the best 
individual (if it represents an acceptable solution for the 
problem). 

B. A Genetic Algorithm (GATC) for the Test Compaction 
Problem 

This algorithm is based on the classical sketch of a 
genetic algorithm (figure 1), where the individuals in the 
initial population are copies of the start sequence. Mutations 
are applied on the current population and the best 
individuals are kept for the next iteration. After a number of 
iterations, we apply on every individual the Greedy 
algorithm (described in section 3) in order to obtain a 
compacted coverage set of tests. The particularity of this 
approach is the initialization with copies of the start 
sequence and the usage of the Greedy approach during the 
final phase. 

Representation. A potential solution is a coverage set of 
the input sequence, i.e. a set which contains a compatible 
test for any test contained in the input sequence. A 
population is a set of such elements. On its individuals are 
applied a succession of mutation operators. A mutation 
operator is a substitution of two compatible tests with their 
merged one. 

Initialization. Often it is helpful to combine EAs with 
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problem-specific heuristics (see e.g.  [5, 8, 9, 20, 24]) and 
the initial population contains a number of individuals 
which are enhanced by using other techniques, like e. g. 
Greedy. In our case, we will not use any specific techniques 
for initialization. The initial individuals are copies of the 
input sequence. They will differentiate themselves by 
applying the mutation operators. 

 

Objective Function and Selection. We will use as fitness 
function the total number of Don’t Cares (‘X’s): 

∑
=

=
n

i
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1
21 )(#),...,,(                             (1) 

where #X() is a function which gives the number of ‘X’ 
characters in the parameter (which is a test string). In the 
selection phase we consider that an individual with a higher 
fitness is better than other with a lower one. We keep for the 
next iteration half from the best individuals and the rest are 
copies of some of them (for two identical tests the mutation 
operator will lead fast always to different individuals). 

 

Algorithm. A refined version of the classical genetic 
algorithm: 

 
         ALGORITHM_GATC   
              initialize(populationSize) 

 initialize(mutationRate) 
 numMutations  ← populationSize*mutationRate 

 initialize(individuals) 
              For (i ← 1; i ≤ numGenerations; step 1)  
     apply_Mutation_Operators(numMutatios); 
                calculate_Fitness(allNewIndividuals); 
                remove_Worst_Inviduals (populationSize/2); 
   
complete_With_Copy_Individuals(populationSize/2) 

return best_element(individuals); 
          END_ALGORITHM_GATC 

 
Figure 2. Pseudo code for the TCP’s hybrid EA. 
 
Parameter Settings. The chosen settings are based on 
experimental tests. Since the genetic algorithm is applied to 
different data sizes, from very small to large ones, it 
becomes necessary to adapt these settings to the size of the 
problem. In our case, the necessary time to create and 
process a new generation for large data sets is very high. 
Therefore the number of generations is also related to the 
input data size. 

V. EXPERIMENTAL RESULTS 
Like in the experiments from above, a large amount of 

test cases with different parameters were generated: same 
number of tests and different lengths with same expected 
compaction rate or same dimensions with different 
compaction rates. In many of them, GATC provided higher 
quality results as GR. We concentrate only of the quality of 
results and not the execution time: the experiments shows 
better ones as the GR results, by a considerable increase of 
execution time with the dimension of the input data. A 
fragment of these results are further presented and 
commented in tables 1, 2, 3. In the next tables, #tests 
denotes the number of tests in the initial sequence, #length 
the length of every test, output columns % denote the 

compaction rate (how small is the result sequence compared 
to initial one) and output columns sec the execution time in 
seconds for the solved instance. 

 
TABLE I 

COMPARATIVE RESULTS FOR ALGORTIHMS GATC AND GR: SIZE 
BETWEEN 100 AND 300, LENGTH OF THE TESTS BETWEEN 60 AND 

100, EXPECTED COMPACTION RATE 20% (FIRST 9 CASES), 
RESPECTIVELY 50% (CASES 10-18). NOTE: THE SAME RESULTS 

PROVIDED BY BOTH ALGORITHMS ARE MARKED WITH BOLD 
 

Input Data 
 

GR 

#case #tests #length % sec % sec 
1 100 60 16.00 0 15.00 1 
2 100 80 24.00 0 20.00 1 
3 100 100 9.00 0 9.00 2 
4 200 60 27.50 0 23.00 12 
5 200 80 20.50 0 16.50 4 
6 200 100 24.00 0 23.00 12 
7 300 60 20.67 0 20.00 15 
8 300 80 25.00 1 24.00 17 
9 300 100 25.33 1 23.33 20 

10 100 60 58.00 0 54.00 3 
11 100 80 63.00 0 61.00 3 
12 100 100 53.00 0 52.00 3 
13 200 60 49.50 1 47.00 22 
14 200 80 53.50 1 53.50 21 
15 200 100 60.50 2 59.50 21 
16 300 60 51.67 3 50.67 65 
17 300 80 58.67 4 56.67 71 
18 300 100 57.00 5 54.33 81 

 
For a large amount of generated test sequences with a size 

between 100 and 500, every test with a length between 50 
and 1000, we obtained better results using GATC in over 
91% of cases. For identical dimensions, the results are better 
for cases when the expected compaction rate is smaller (e. g. 
better results for an expected compaction rate around 20% 
as for one around 60%, identical dimensions). For a fixed 
number of tests, the achievements provided with GATC are 
better for a smaller length of them (e. g. for number of tests 
100, GATC provided much better results for a length 50 as 
for the length 1000). 

Table 2 contains results provided by GR and GATC for 
larger input data: our experiments showed that the GATC 
algorithm leads to better results in over 83% from cases with 
this dimension. The expected compaction rate was kept to 
30% during our experiments. A visual expression of Table 3 
can be seen in the Figure 5 on the last page of this paper.  

 
TABLE II 

COMPARATIVE RESULTS FOR ALGORTIHMS GATC AND GR AND 
LARGE DATASETS: SIZE BETWEEN 500 AND 1500, LENGTH OF THE 
TESTS BETWEEN 1000 AND 7000, EXPECTED COMPACTION RATE 

30%  
 

Input Data 
 

GR 

#case #tests #length % sec % sec 
1 500 1000 37.40 8 36.00 164 
2 500 4000 30.40 15 30.40 303 
3 500 7000 33.40 24 33.20 529 
4 1000 1000 32.90 56 32.40 1114 
5 1000 4000 30.10 136 29.90 2485 
6 1000 7000 30.00 243 29.70 5625 
7 1500 1000 36.60 195 35.67 3897 
8 1500 4000 30.93 483 30.73 9342 
9 1500 7000 30.33 679 30.20 13693 
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Further, we kept the same dimension of input data and 
changed only the expected compaction to one higher as 
65%.  From 600 instances generation and randomly 
executions of this diagnosis, the results were in over 93% 
the same. The execution time for this kind of inputs data 
was sensibly the same with the corresponding test from 
Table 2; this means that the expected compaction rate 
doesn’t influence the execution time of both algorithms GR 
and GATC for the same dimension of inputs. 

Another experiment was to keep the number of tests in 
sequence and to decrease significantly the length of tests. In 
this case the GATC provided always better results (see table 
3 and figure 5 on the last page). 

 
TABLE III 

COMPARATIVE RESULTS FOR ALGORTIHMS GATC AND GR AND 
LARGE DATASETS: SIZE BETWEEN 500 AND 1500, LENGTH OF THE 
TESTS BETWEEN 10 AND 110, EXPECTED COMPACTION RATE 30%  

 
Input Data 

 
GR 

#case #tests #length % sec % sec 
1 500 10 37.00 0 35.20 3 
2 500 60 40.00 2 38.20 38 
3 500 110 39.80 1 38.00 56 
4 1000 10 37.70 1 36.60 16 
5 1000 60 42.70 9 42.00 199 
6 1000 110 41.10 12 39.90 245 
7 1500 10 37.60 3 37.33 49 
8 1500 60 43.60 33 41.67 671 
9 1500 110 40.47 61 39.67   1205 

 
An explanation of this effect is the fact that in this case 

the space of solutions has a considerable undersize related to 
the space of solution for the similar cases in table 2 (with the 
same initial size of the sequence but longer tests). It would 
be expected that the algorithm provides, naturally, even 
better results for a bigger population and/or more 
generations also for the instances from table 2. 

VI. CONCLUSIONS AND FUTURE WORK 
All algorithms are implemented in C++ using the 

Standard Template Library (STL). Because a test sequence 
can contain only 5 characters, we represented each of them 
with a code of fixed length, on 3 bits: ‘0’ – 000, ‘1’ – 001, 
‘U’- 010, ‘Z’-011 and ‘X’ – 111 and we can use the 

std::bitset, which contains all operations needed for bit 
strings.  

After a formal description of the problem, we described 
an optimal solution, for that the complexity is exponential 
and it can be used for small input data. Additionally, we 
described also a Greedy approach (GR), which is in practice 
efficient for large data size: it provides excellent quality 
results in acceptable execution time. 

 
It follows an accurate description of a proposed genetic 

algorithm (GATC): representation and initialization of 
individuals/population; fitness-function and selection; 
pseudo code for the GATC and experimental results for 
different categories of input data. Table 1 presents 
comparative results GR vs. GATC for relative small data 
sets (size 100 to 300, test length 60 to 100): for most of 
cases GATC provides higher quality results, which can be 
also seen visually in figure 3. Table 2 presents comparative 
results of GR vs. GATC for large data sets: size 500 to 
3000, test length 1000 to 7000. Also for them, in the most 
cases GATC leads to better compaction rates, that means 
smaller coverage sets.  

 
The experiments showed that the behavior of algorithms 
changes by varying different parameters: size of the input 
data, length of a test, expected compaction rate. The results 
quality provided by GATC can be increased by improving 
the parameter settings or adapt them specifically to the input 
data traits. Also improvements can be done by the 
implementation details; for example, experiments showed 
that a STL std::string representation will lead to faster 
execution times for some very specific inputs (e.g. size 100 
to 500, length of tests 5000 to 10000, expected compaction 
rate 20%). Also an analysis of the expected compaction rate 
can be useful, our experiments showed different quality of 
results for different expected compaction rates. This kind of 
diagnosis and improved hybrid GAs will lead to faster and 
higher quality solutions, capable to cope with larger data 
sets. Another direction could be the classification of the tests 
with more Don’t Cares on the pretty same positions (or 
other classification criteria) and the split of the input 
sequence in more subsequences (classification classes); to 
solve them and then combine their results (a kind of divide-
et-impera technique). Developing more genetic operators for 
individuals and applying them in combination with the 
proposed mutation operator could lead also to improvements 
of the results. 
 

 

  
Figure 3. GR and GATC compaction percentage for the test cases 1-9, respectively 10-18, Table 1  
#Test cases / Percentage (GATC percentage is fast always under GR percentage). 
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Figure 4. GR and GATC compaction percentage for Table 2. 

 
 

 
          Figure 5. GR and GATC compaction percentage for Table 3. 
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