
9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 144

Abstract—The test compaction is one of most important

requirement regarding the large scale integration (LSI) testing.
The overall cost of a VLSI circuit’s testing depends on the
length of its test sequence; therefore the reduction of this
sequence, keeping the coverage of error prone points, will lead
to a reduction of used resources in the testing process. This
problem is NP-complete. Consequently an optimal algorithm
doesn’t have applicability in practice. In this paper we describe
an evolutionary algorithm (GATC) and we introduce the term
of compaction factor (cf), i.e. the “expected” percentage of
compacted test sequence. GATC provides in praxis better
results than a greedy approach (GR) for many configurations.
This improvement comes from the freedom to merge randomly
pairs of compatible tests for different candidates to solution
and keeps the ones with more “Don’t care” positions, thus
there is an increased probability to find for them compatible
tests in the next stage. Also the C++ implementation was
optimized, using compact data structures and the Standard
Template Library.

Index Terms—Evolutionary Algorithms, Digital Circuit
Design, Test Compaction Problem, Set Coverage Problem, Test
Generation, Greedy Algorithm, Optimization, Don’t Care
Value

I. INTRODUCTION
The overall testing process is very important for a circuit

and one issue is minimizing the cost of testing by finding
effective test sequences with a minimal size, which cover all
faults (see e.g. [10, 13]). The size of the test sequence
directly affects the overall cost of the circuit testing. The test
compaction is the activity to reduce the length of this
sequence, by keeping its effectiveness. This will lead to a
testing time which consumes no more than necessary time
resources. In praxis, the test compaction for a VLSI circuit
is done in two ways: dynamically and statically. The
dynamic test compaction is performed simultaneous with the
test generation and the static test compaction is used after
the test generation, as an optimization step.

In this paper we propose an evolutionary approach for the
Test Compaction Problem, which could be used, also
combined with other techniques, in the static compaction
phase. Recently, EAs have been successfully applied to
several problems in VLSI CAD (see e.g. [8, 9, 20, 25]). For
specifically test compaction issues there are also proposed
more methods (see e.g. [10, 13]). We transform the general
problem in a particular one and provide the formal
framework in Section 2: the problem domain, description of
optimal and greedy methods. Based on experimental results,
we concluded that the Greedy method leads to very good

quality results. In section 4 we present an evolutionary
algorithm, which provides in the most cases better results as
Greedy. For test generation we use a test generator module,
capable to produce artificial benchmarks with an expected
compaction rate (the expected percentage of the optimal
compacted sequence, which covers the input sequence). As
showed in our experiments, this factor influences the results
and could be used to develop different kind of methods
(from both design and implementation point of view). The
paper contains 3 tables, 5 figures and an end section with a
conclusion and various ideas to continue the research.

II. PROBLEM DOMAIN AND CLASSICAL
APPROACHES

Let us consider a set of test sequences T = {S1, S2, …, Sn}
detecting (covering) the set of faults {f1, f2, …, fm} of a
sequential circuit. Every test sequence Si = {v1, v2, …, vii}, i
= 1, …, n is an ordered set of Li test vectors v1, v2, …, vLi,
where Li is the length of Si. A fault fi within a sequence Sj
has the detection cost dij equal to the number of vectors from
the beginning of the sequence until fi becomes detected in Sj.
Test compaction problem is to find a collection of
subsequences, i.e. subsets of vector sequences, so that all
faults in F are covered and the test length of the collection is
a minimum. This problem can be reformulated as a set
covering problem, which is NP-complete. Further we will
reformulate and specialize it, using a concrete number of
faults.

We represent the tests as strings, which contain only
characters from a set S with cardinal number 5 and one of
this character is ‘Don’t Care’ (X). This means that it is
compatible with any other character from S. We consider
that two characters are compatible if they are the same or
one of them is Don’t Care. For example, the tests
t1=10ZX0XU and t2=X0Z10UU are compatible because all
same position pairs from them are compatible (1-X, 0-0, Z-
Z, X-1, 0-0, X-U and U-U). Two compatible tests can be
reduced to one test, by using a merge operation on every
position in both of them: one character merged to it gives
itself, one character merged to X gives this character. For
our example: Merge (t1, t2) = 10Z10UU. The problem is to
reduce a given sequence of tests to a sequence of minimal
length, by successively applying the Merge operation.

An optimal method has to explore the whole space of
solutions and pick one with minimal length. This exhaustive
search has an exponential complexity and no applicability in
practice; it can process only very small instances of the

Efficient Evolutionary Approach for the
Test Compaction Problem

Doina LOGOFĂTU
University of Applied Sciences,

Faculty of Computer Science and Mathematics,
Lothstr. 64, 80335 Munich, Germany

doinabooks@yahoo.com

mailto:doinabooks@yahoo.com

 145

problem. Other approach is a Greedy one, by applying
repeatedly the Merge operation on first found compatible
pair of tests and modifying the current sequence. This
algorithm is polynomial and can cope with large data sets in
an acceptable execution time. From our experiments results
that, for relative small data (various parameters: 25 to 30
tests, every with a length between 20 and 40), the greedy
algorithm leads in the most cases to the same result as the
optimal one. From 625 cases, only in 10 cases we obtained
with Greedy a sensible lower quality of results and this is
only 1.6%. For this experiment we generated artificial input
sequences, which had a compaction rate of around 50%.
This allowed us to observe the behavior of two methods for
sequences which are ‘compressible’ and conclude that the
Greedy method is a powerful instrument regarding both
quality of the results and execution time.

III. PREVIOUS APPROACHES
This problem is very similar to the well-known Set

Coverage Problem. This is contained in the list of 21
classical NP-complete problems, for which Richard Karp
demonstrated that they are included in the class of NP-
complete problems. It has a very wide area of applicability,
in domains like: wireless sensor networks (k-Sensor
Coverage Problem, see e.g. [2]), urban systems (see e. g.
[25]), VLSI Test Coverage (see e.g. [14, 17]), discrete
geometry (e.g. image processing, covering for hyper cubes).

Some useful ideas regarding the test compaction process
are presented in [14], where the authors introduce a method
based on fault simulation, and they present some heuristics
for reducing the simulation effort. The test sequences are
fully specified, generated by a sequential ATPG and the
proposed methods produce a test sequence which contain
lots of Don’t Cares (Xs) without losing stuck-at fault
coverage of the original test sequence. Many greedy
approaches with an accurate analysis for the (k-) Set
Coverage Problem were developed (see e.g. [15]) and were
proposed some formal different evolutionary approaches for
variations of the problem (see e.g. [1, 17]).

IV. EVOLUTIONARY ALGORITHM
We use a genetic algorithm, which transforms the

population along a number of generations. Every individual
will be a sequence of tests, which is overall compatible with
the input sequence and thus a possible solution. In a specific
generation, the next population is constructed on the current
one, by preserving a part of individuals and filling the rest
with copies of some of the best individuals. The fitness-
function in this stage is defined as the overall number of
Don’t Cares in sequence. A higher value of this function for
an individual increases the probability to find afterwards
compatible pairs. At the end, every individual in population
will be compacted by using the greedy algorithm.

A. Overview of Genetic Algorithms
A Genetic Algorithm (GA) is an optimization method

with simple operations based on the natural selection model
[26]. The genetic algorithms have been applied to hard
optimization problems including VLSI layout optimization,
boolean satisfiability and the Set Cover Problem (see e.g. [9,

16, 17, 25]). There are four main distinctions between GA-
based approaches and traditional problem-solving methods:

a) GAs operate with a genetic representation of
potential solutions, not the solutions themselves.

b) GAs search for optima of a population of
potential solutions and not a single solution (the
genetic operators alter the composition of
children).

c) GAs use evaluation functions (fitness), no other
auxiliary knowledge such as derivative
information used in the conventional methods.

d) GAs use probabilistic transition rules (not
deterministic rules) and various parameters
(population size, probabilities of applying the
genetic operators, etc.)

For a specific problem, it is very important to use related

genetic operators, which preserve the good traits from the
parents, but are also able to bring improvements in the
resulting children. The initialization step and the parameter
settings are also very significant. Often, the GAs are used
mixed with another programming techniques, for example
greedy for generating good start individuals. In this case
they are called hybrid GAs.

ALGORITM_GA
 Initialise_Random_Population()
 While (not terminal case) Execute
 ApplyGeneticOperators();
 CalculteFitnessForAllIndividuals();
 UpdatePopulation();
 End_While
END_ALGORITHM_GA

Figure 1. Pseudo code for a Genetic Algorithm.

The terminal case could be a specific condition which

should be satisfied from the population or from the best
individual (if it represents an acceptable solution for the
problem).

B. A Genetic Algorithm (GATC) for the Test Compaction
Problem

This algorithm is based on the classical sketch of a
genetic algorithm (figure 1), where the individuals in the
initial population are copies of the start sequence. Mutations
are applied on the current population and the best
individuals are kept for the next iteration. After a number of
iterations, we apply on every individual the Greedy
algorithm (described in section 3) in order to obtain a
compacted coverage set of tests. The particularity of this
approach is the initialization with copies of the start
sequence and the usage of the Greedy approach during the
final phase.

Representation. A potential solution is a coverage set of
the input sequence, i.e. a set which contains a compatible
test for any test contained in the input sequence. A
population is a set of such elements. On its individuals are
applied a succession of mutation operators. A mutation
operator is a substitution of two compatible tests with their
merged one.

Initialization. Often it is helpful to combine EAs with

 146

problem-specific heuristics (see e.g. [5, 8, 9, 20, 24]) and
the initial population contains a number of individuals
which are enhanced by using other techniques, like e. g.
Greedy. In our case, we will not use any specific techniques
for initialization. The initial individuals are copies of the
input sequence. They will differentiate themselves by
applying the mutation operators.

Objective Function and Selection. We will use as fitness
function the total number of Don’t Cares (‘X’s):

∑
=

=
n

i
inX testXtttN

1
21)(#),...,,((1)

where #X() is a function which gives the number of ‘X’
characters in the parameter (which is a test string). In the
selection phase we consider that an individual with a higher
fitness is better than other with a lower one. We keep for the
next iteration half from the best individuals and the rest are
copies of some of them (for two identical tests the mutation
operator will lead fast always to different individuals).

Algorithm. A refined version of the classical genetic
algorithm:

 ALGORITHM_GATC
 initialize(populationSize)

 initialize(mutationRate)
 numMutations ← populationSize*mutationRate

 initialize(individuals)
 For (i ← 1; i ≤ numGenerations; step 1)
 apply_Mutation_Operators(numMutatios);
 calculate_Fitness(allNewIndividuals);
 remove_Worst_Inviduals (populationSize/2);

complete_With_Copy_Individuals(populationSize/2)

return best_element(individuals);
 END_ALGORITHM_GATC

Figure 2. Pseudo code for the TCP’s hybrid EA.

Parameter Settings. The chosen settings are based on
experimental tests. Since the genetic algorithm is applied to
different data sizes, from very small to large ones, it
becomes necessary to adapt these settings to the size of the
problem. In our case, the necessary time to create and
process a new generation for large data sets is very high.
Therefore the number of generations is also related to the
input data size.

V. EXPERIMENTAL RESULTS
Like in the experiments from above, a large amount of

test cases with different parameters were generated: same
number of tests and different lengths with same expected
compaction rate or same dimensions with different
compaction rates. In many of them, GATC provided higher
quality results as GR. We concentrate only of the quality of
results and not the execution time: the experiments shows
better ones as the GR results, by a considerable increase of
execution time with the dimension of the input data. A
fragment of these results are further presented and
commented in tables 1, 2, 3. In the next tables, #tests
denotes the number of tests in the initial sequence, #length
the length of every test, output columns % denote the

compaction rate (how small is the result sequence compared
to initial one) and output columns sec the execution time in
seconds for the solved instance.

TABLE I

COMPARATIVE RESULTS FOR ALGORTIHMS GATC AND GR: SIZE
BETWEEN 100 AND 300, LENGTH OF THE TESTS BETWEEN 60 AND

100, EXPECTED COMPACTION RATE 20% (FIRST 9 CASES),
RESPECTIVELY 50% (CASES 10-18). NOTE: THE SAME RESULTS

PROVIDED BY BOTH ALGORITHMS ARE MARKED WITH BOLD

Input Data

GR

#case #tests #length % sec % sec
1 100 60 16.00 0 15.00 1
2 100 80 24.00 0 20.00 1
3 100 100 9.00 0 9.00 2
4 200 60 27.50 0 23.00 12
5 200 80 20.50 0 16.50 4
6 200 100 24.00 0 23.00 12
7 300 60 20.67 0 20.00 15
8 300 80 25.00 1 24.00 17
9 300 100 25.33 1 23.33 20

10 100 60 58.00 0 54.00 3
11 100 80 63.00 0 61.00 3
12 100 100 53.00 0 52.00 3
13 200 60 49.50 1 47.00 22
14 200 80 53.50 1 53.50 21
15 200 100 60.50 2 59.50 21
16 300 60 51.67 3 50.67 65
17 300 80 58.67 4 56.67 71
18 300 100 57.00 5 54.33 81

For a large amount of generated test sequences with a size

between 100 and 500, every test with a length between 50
and 1000, we obtained better results using GATC in over
91% of cases. For identical dimensions, the results are better
for cases when the expected compaction rate is smaller (e. g.
better results for an expected compaction rate around 20%
as for one around 60%, identical dimensions). For a fixed
number of tests, the achievements provided with GATC are
better for a smaller length of them (e. g. for number of tests
100, GATC provided much better results for a length 50 as
for the length 1000).

Table 2 contains results provided by GR and GATC for
larger input data: our experiments showed that the GATC
algorithm leads to better results in over 83% from cases with
this dimension. The expected compaction rate was kept to
30% during our experiments. A visual expression of Table 3
can be seen in the Figure 5 on the last page of this paper.

TABLE II

COMPARATIVE RESULTS FOR ALGORTIHMS GATC AND GR AND
LARGE DATASETS: SIZE BETWEEN 500 AND 1500, LENGTH OF THE
TESTS BETWEEN 1000 AND 7000, EXPECTED COMPACTION RATE

30%

Input Data

GR

#case #tests #length % sec % sec
1 500 1000 37.40 8 36.00 164
2 500 4000 30.40 15 30.40 303
3 500 7000 33.40 24 33.20 529
4 1000 1000 32.90 56 32.40 1114
5 1000 4000 30.10 136 29.90 2485
6 1000 7000 30.00 243 29.70 5625
7 1500 1000 36.60 195 35.67 3897
8 1500 4000 30.93 483 30.73 9342
9 1500 7000 30.33 679 30.20 13693

 147

Further, we kept the same dimension of input data and
changed only the expected compaction to one higher as
65%. From 600 instances generation and randomly
executions of this diagnosis, the results were in over 93%
the same. The execution time for this kind of inputs data
was sensibly the same with the corresponding test from
Table 2; this means that the expected compaction rate
doesn’t influence the execution time of both algorithms GR
and GATC for the same dimension of inputs.

Another experiment was to keep the number of tests in
sequence and to decrease significantly the length of tests. In
this case the GATC provided always better results (see table
3 and figure 5 on the last page).

TABLE III

COMPARATIVE RESULTS FOR ALGORTIHMS GATC AND GR AND
LARGE DATASETS: SIZE BETWEEN 500 AND 1500, LENGTH OF THE
TESTS BETWEEN 10 AND 110, EXPECTED COMPACTION RATE 30%

Input Data

GR

#case #tests #length % sec % sec
1 500 10 37.00 0 35.20 3
2 500 60 40.00 2 38.20 38
3 500 110 39.80 1 38.00 56
4 1000 10 37.70 1 36.60 16
5 1000 60 42.70 9 42.00 199
6 1000 110 41.10 12 39.90 245
7 1500 10 37.60 3 37.33 49
8 1500 60 43.60 33 41.67 671
9 1500 110 40.47 61 39.67 1205

An explanation of this effect is the fact that in this case

the space of solutions has a considerable undersize related to
the space of solution for the similar cases in table 2 (with the
same initial size of the sequence but longer tests). It would
be expected that the algorithm provides, naturally, even
better results for a bigger population and/or more
generations also for the instances from table 2.

VI. CONCLUSIONS AND FUTURE WORK
All algorithms are implemented in C++ using the

Standard Template Library (STL). Because a test sequence
can contain only 5 characters, we represented each of them
with a code of fixed length, on 3 bits: ‘0’ – 000, ‘1’ – 001,
‘U’- 010, ‘Z’-011 and ‘X’ – 111 and we can use the

std::bitset, which contains all operations needed for bit
strings.

After a formal description of the problem, we described
an optimal solution, for that the complexity is exponential
and it can be used for small input data. Additionally, we
described also a Greedy approach (GR), which is in practice
efficient for large data size: it provides excellent quality
results in acceptable execution time.

It follows an accurate description of a proposed genetic

algorithm (GATC): representation and initialization of
individuals/population; fitness-function and selection;
pseudo code for the GATC and experimental results for
different categories of input data. Table 1 presents
comparative results GR vs. GATC for relative small data
sets (size 100 to 300, test length 60 to 100): for most of
cases GATC provides higher quality results, which can be
also seen visually in figure 3. Table 2 presents comparative
results of GR vs. GATC for large data sets: size 500 to
3000, test length 1000 to 7000. Also for them, in the most
cases GATC leads to better compaction rates, that means
smaller coverage sets.

The experiments showed that the behavior of algorithms
changes by varying different parameters: size of the input
data, length of a test, expected compaction rate. The results
quality provided by GATC can be increased by improving
the parameter settings or adapt them specifically to the input
data traits. Also improvements can be done by the
implementation details; for example, experiments showed
that a STL std::string representation will lead to faster
execution times for some very specific inputs (e.g. size 100
to 500, length of tests 5000 to 10000, expected compaction
rate 20%). Also an analysis of the expected compaction rate
can be useful, our experiments showed different quality of
results for different expected compaction rates. This kind of
diagnosis and improved hybrid GAs will lead to faster and
higher quality solutions, capable to cope with larger data
sets. Another direction could be the classification of the tests
with more Don’t Cares on the pretty same positions (or
other classification criteria) and the split of the input
sequence in more subsequences (classification classes); to
solve them and then combine their results (a kind of divide-
et-impera technique). Developing more genetic operators for
individuals and applying them in combination with the
proposed mutation operator could lead also to improvements
of the results.

Figure 3. GR and GATC compaction percentage for the test cases 1-9, respectively 10-18, Table 1
#Test cases / Percentage (GATC percentage is fast always under GR percentage).

 148

Figure 4. GR and GATC compaction percentage for Table 2.

 Figure 5. GR and GATC compaction percentage for Table 3.

REFERENCES
[1] Alon, N., Moshkovitz, D., Safra, M.: “Algorithmic construction of

sets for k-restrictions,” ACM Transactions on Algorithms (TALG), v.
2 n.2, pp. 153-177, 2006.

[2] Cardei, M., Wu, J.: “Energy-efficient coverage problems in wireless
ad-hoc sensor networks,” Computer Communications, v. 29 n. 4, pp.
415-420, 2006.

[3] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C.: Introduction
to Algorithms, 2nd Edition, MIT Press, 2001.

[4] Davis, L.: “Applying adaptive algorithms to epistatic domains,”
In Proceedings of IJCAI, pages 162-164, 1985.

[5] Davis, L.: Handbook of Genetic Algorithms, New York, 1991.
[6] De Micheli, G.: Synthesis and Optimization of Digital Circuits.

McGraw-Hill, Inc., 1994.
[7] Drechsler, N., Drechsler, R.: Exploiting don’t cares during data

sequencing using genetic algorithms. In ASP Design Automation
Conf., pp. 303-306, 1999.

[8] Drechsler, R., Drechsler, N.: Evolutionary Algorithms for
Embedded System Design. Kluwer Acadmeic Publisher, 2002.

[9] Drechsler, R.: Evolutionary Algorithms for VLSI CAD. Kluwer
Academic Publisher, 1998.

[10] El-Maleh, A., Osais, Y.: Test vector decomposition based static
compaction algorithms for combinatorial circuits, ACM Trans. Des.
Autom. Electron. Syst., vol. 8, pp. 430-459, 2003.

[11] Feige, U.: A Thereshold of lnn for Approximating Set Cover, Journal
of the ACM (JACM), v. 45 n. 4, pp. 634-652, 1998.

[12] Garey, M. R., Johnson, D. S.: Computers and Intractability – A Guide
to NP-Completeness. Freeman, San Francisco, 1979.

[13] Guo, R., Pomeranz, I., Reddy, S. M., On improving static test
compaction for sequential circuits, VLSI Design, Fourteenth
International Conference, pp. 111-116, 2001.

[14] Higami, Y., Kajihara, S., Pomeranz, I., Kobayashi, S., Takamatsu, Y.:
On Finding Don’t Cares in Test Sequences for Sequential Circuits,
IEICE Transactions on Information and Systems, v. E89 n. 11, 2006.

[15] Hochbaum, D., S., Pathria, A.: Analysis of the greedy approach in
problems of maximum k-coverage, Naval Research Logistics, v. 45
n.6, pp. 615-627, 1998.

[16] Holland, J. H.: Adaption in Natural and Artificial Systems. The
University of Michigan Press, Ann Arbor, MI, 1975.

[17] Ibrahim, W., El-Chouemi, A., El-Sayed, H.: Novel Heuristic and
Genetic Algorithms for the VLSI Test Coverage Problem, Computer
Systems and Applications, IEEE International Conference, pp. 402-
408, 2006.

[18] Karp, M. R.: Reductibility Among Combinatorial Problems,
Complexity of Computer Computations (Symposium Proceedings),
Plenum Press, 1972.

[19] Logofătu, D.: Algorithmen und Problemlösungen mit C++, Vieweg-
Verlag, 2006.

[20] Logofătu, D.: Drechsler, R., Efficient Evolutionary Approaches for
the Data Ordering Problem with Inversion, 3rd European Workshop
on Hardware Optimisation Techniques (EvoHOT), LNCS 3907, pp.
320-331, Budapest, 2006.

[21] Logofătu, D.: Greedy Approaches for the Data Ordering Problem with
Inversion, Proceedings of ROSYCS, Romanian Symposium on
Computer Science, pp. 65-80, Iaşi, 2006.

[22] Logofătu, D.: Algoritmi fundamentali in C++. Aplicaţii, Editura
Polirom, Iaşi, 2007.

[23] Logofătu, D.: Algoritmi fundamentali in Java. Aplicaţii, Editura
Polirom, Iaşi, 2007.

[24] Lund, C., Yannakakis, M.: On the hardness of approximating
minimization problems, Journal of the ACM (JACM), v. 41 n. 5, pp.
960-981, 1994.

[25] Mazumder, P., Rudnick, E.: Genetic Algorithms for VLSI Design,
Layout & Test Automation. Prentice Hall, 1998.

[26] Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution
Programs, 3rd ed. Springer-Verlag, Berlin Heidelberg New York
(1996).

[27] Murray, A., T., Kim, K., K., Davis, J., W., Machiraju, R., Parent, R.:
Coverage optimization to support security monitoring, Computers,
Environment and Urban Systems, vol. 31, n. 2, pp 133-147, 2007.

