
9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 149

Abstract—In order to capture the compartmentalization and

the behavior of membrane systems for performance modeling of
parallel and distributed computing, we present the Descriptive
Timed Membrane Petri Nets (TMPN) that can modify, in run-
time, their own structure by rewriting some of their descriptive
expression components. Furthermore, this descriptive approach
facilitates the understanding of complex models and their
component-based construction as well as the application of
modern computer engineering concepts. A Visual Membrane
Petri Nets (VHPN) software tool that offers a graphical user
interface has been developed and described for visual
simulation of TMPN models.

Index Terms—membrane systems, performance modeling,
Petri nets, rewriting, reconfigurable, software tool

I. INTRODUCTION
Recent technological achievements require advances

beyond the existing computational models in order to be
used effectively. Thus, the software architectures provide a
high-level system description in terms of a collection of
computational components and connectors. Dynamic
software architectures are those that change their structure
and enact the modifications during the systems execution.

Also, in mobile ad-hoc networks and sensor networks, it is
critical to accurately represent dynamic behavior in a precise
and rigorous style. The dynamic behavior includes not only
state change, but also change in structure [2, 11, 12].

Pragmatic aspects of current and future reconfigurable
software architectures, computer systems, mobile ad-hoc
networks and sensor networks, will be modeled so that
realistic estimations of efficiency can be given for
algorithms in these new settings.

However, the main technical challenge is to find a way to
represent the structural changes of networks behavior,
consistent with the conventional representation of dynamic
state change, synchronization, concurrency, non-
determinism. The representation must be mathematically
based and explicitly represent timed structural behavior
when run-time self-modifying systems are considered.

To do this requires the use of rigorous methods for
specification, design, verification, performance evaluation
which have been developed, including finite state machines,
Petri nets [3, 5, 6] and P systems [9, 7], but they have
focused on the representation of state change.

In previous studies [4, 5, 6] using descriptive expressions
(DE), we have introduced the dynamic marked-controlled
rewriting generalized Petri net (RGPN) and timed membrane
Petri nets (TMPN) for performance modeling of parallel and
distributed computing where a structure change and moving
of membrane is described as transition rewriting rules. With
RGPN and TMPN, we can easily and directly model
concurrent and distributed systems that change their
structure dynamically.

Traditional Petri net simulation environments [10],
however, are not an adequate tool for our purposes for
analysis of TMPN models, as they make use of the fixed
static structure of nets.

In this paper, we present the Visual Membrane Petri Nets
(VMPN) tool for the verification and performance modeling
and of marked-controlled RGPN and TMPN that can in run-
time modify their own structure by rewriting some of their
components.

The paper is organized as follows. In Section 2 we present
the model definition of timed RGPN. In Section 3 we
consider the P systems and model definition of timed TMPN.
Subsequently in Section 4 we considered the VMPN tool.
Conclusions are drawn in Section 5.

II. DYNAMIC REWRITING TIMED PETRI NETS
In this section we introduce the model of descriptive

dynamic net rewriting PN system. Let YX ρ be a binary
relation. The domain of ρ is the Dom(ρ) = Yρ and the
codomain of ρ is the Cod(ρ) = ρX .

Definition 1. A descriptive dynamic marked-controlled

rewriting generalized Petri net (RGPN) system is 6-tuple:
>=< MGGRRN rtr ,,,, φΓ , where Γ = < P, T,

Pre, Post, Test, Inh, G, Pri, Kp> is a generalized Petri net
structure [??];

}...,,{ 1 krrR = is a finite set of rewriting rules about
the runtime structural modification of net so
that ∅=∩∩ RTP .

In the graphical representation, the rewriting rule is
drawn as two embedded empty rectangles. We let

RTE ∪= denote the set of events of the net;

VMPN–Software Tool for Performance
Modeling of Dynamic Modifiable Structure
Systems with Timed Membrane Petri Nets

Emilian GUŢULEAC, Iurie ŢURCANU, Emilia GUŢULEAC
Computer Science Department, Technical University of Moldova

Bd. Stefan cel Mare nr. 168, MD-2004 Chisinau, Republic of Moldova
egutuleac@mail.utm.md

mailto:egutuleac@mail.utm.md

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 150

},{: RTE →φ is the function that indicates for every
rewriting rule the type of event can occur;

→× +
||: P

tr INRG {True,False} is the transition rule
guard function associated with Rr ∈ ,
and →× +

||: P
r INRG {True, False} is the rewriting rule

guard function defined for each rule of Rr ∈ , respectively.
For Rr ∈∀ , the trtr GMg ∈)(and rr GMg ∈)(will be
evaluated in each marking and if they are evaluated to True,
the rewriting rule r is enabled, otherwise it is disabled.
Default value of trtr GMg ∈)(is True and for rr GMg ∈)(
is False).

Let A= < Pre, Post, Test, Inh > be a set of arcs that
belong to net Γ and >=< MRRN ,Γ and

>=< rtr GGRR ,,, φΓΓ be represented by the
descriptive expression DERГ and DERN, respectively [5, 6]. A
dynamic rewriting structure modifying the rule Rr ∈ of RN
is a map WL DEDEr >: , where the codomain of the
rewriting operator, > , is a fixed descriptive

expression LDE of a subnet LRN of current net RN, where

RNRNL ⊆ with PPL ⊆ , EEL ⊆ and set of arcs

AAL ⊆ and the domain of > is a descriptive

expression WDE of a new wRN subnet

with PPw ⊆ , EEw ⊆ and set of arcs WA . The rewriting
operator, > , represents a binary operation which produces a
structure change in DERN of the RN net by replacing
(rewriting) the fixed current LDE of the subnet LRN

(LDE and LRN are dissolved) by the new WDE of subnet

WRN that now belongs to the new modified resulting

NRDE ′ of the net WL RNRNNRNR ∪=′)\(with

WL PPPP ∪=′)\(and WL EEEE ∪=′)\(,

WL AAAA +−=′)(where the meaning of \ (∪) is

operation of removing (adding) LRN from (WRN to) net
RN. In this new net NR ′ , obtained by the execution of the
enabled rewriting rule Rr ∈ , the places and events with the
same attributes which belong to NR ′ are fused. By default,
the rewriting rules ∅>LDEr : or WDEr >∅: describe
the rewriting rule which maintains)\(LRNRNNR =′ or

)(WRNRNNR ∪=′ . A state of a RN net is the pair
(MR ,Γ), where ΓR is the configuration of the net
together with a current marking M. Also, the pair
(00 , MRΓ) with PP ⊆0 , EE ⊆0 and marking M0 is called
the initial state of the net. n

Enabling and Firing of Events. The enabling of events
depends on the marking of all places. We say that a
transition jt of the event je is enabled in current marking

M if the following enabling condition),(Mtec j is

verified:

&)),(Pr((),(jii
tp

j tpemMtec
ji

≥∧=
•∈∀

<∧
∈∀

k
tp

m
jk

(
o

&)),(jk tpInh &)),((
* jll
tp

tpTestm
jl

≥∧
∈∀

&)),()((jnnp
tp

tpPostmK
n

jn

≥−∧
•∈∀

)),(Mtg j . The

rewriting rule Rr j ∈ is enabled in current marking M if the

following enabling condition),(Mrec jtr is verified:

&)),(Pr((),(jiirpjtr rpemMrec
ji

≥∧=
•∈∀

<∧
∈∀

k
rp

m
jk

(
o

&)),(jk rpInh &)),((
* jll
rp

rpTestm
jl

≥∧
∈∀

&)),()((jnnp
rp

rpPostmK
n

jn

≥−∧
•∈∀

)),(Mrg jtr .

Let the T(M) and R(M), ∅=∩)()(MRMT , be the
set of enabled transitions and rewriting rules in current
marking M, respectively. Let the)()()(MRMTME ∪= ,
be the set of enabled events in a current marking M. The
event)(MEe j ∈ fires if no other event)(MEek ∈ with

higher priority has been enabled. Hence, for je event if

))),(()()((FalseMrgrt jtrjjjj =∧=∨= φφ then the firing

of the transition)(MTt j ∈ or of the rewriting rule

)(MRr j ∈ changes only the current marking:

),(),(MRMR je ′→ ΓΓ ΓΓ RR =⇔ (and the

MeM j ′>[in ΓR)).

Also, for the every event Ee j ∈ , if

))),(()((TrueMrgr jrjj =∧=φ then the event je

occurs at firing of the rewriting rule jr and it changes the

configuration and marking of the current net, so that:

),(),(MRMR jr ′Γ′→Γ , MrM j ′>[).

The accessible state graph of a net ><= MRRN ,Γ is
the labeled directed graph whose nodes are states and whose
arcs, which are labeled with events or rewriting rules of
RN , are of two kinds:

a) firing of an enabled event)(MEe j ∈ : arcs from

state),(MRΓ to state (MR ′,Γ) labeled with event je ,

so that this event can fire in the configuration ΓR at marking
M and leads to a new marking:

 ⇔′′→′),(),(: MRMRM je ΓΓ (ΓΓ ′= RR and

[MeM j ′>[in ΓR);

b) change configuration: arcs from state),(MRΓ to

state(MRR ′′,Γ) labeled with the rewriting rule Rrj ∈ ,

:jr (LL MR ,Γ)> (WW MR ,Γ) which represent the

change configuration of current RN net:

),(),(MRMR jr ′′→ ΓΓ with MrM j ′>[.

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 151

Let we consider the RN1 net, given by the following

descriptive expression:

1211 1
| ΓΓ RrR EDppDE ′∨= ,

)(|||)(51343521 21
ppppppED tttR ◊⋅=′ Γ , (1)

)1,5(510 ppM = , 211 : ΓΓ RR DEDEr > ,

)0(&)3(),(511 === mmMrg r .

Also, for the rewriting rule jr is required to identify if

LRN net belongs to the ΓR . The firing of enabled events or
rewriting rules modify the current marking and/or modify the
structure and the current marking of RN1 in RN2 given by:

2212 1
| ΓΓ RtR EDppDE ′∨= ,

2543622 432
|||)(ΓΓ RtttR EDpppppED ′′∨⋅=′ ,

)(|| 61532 25
ppppED rtR ◊=′′Γ , (2)

12
1

12 : ΓΓ RR DEDErr >−= ,)1,3,1(321 pppM = ,

)1(&)4(),(512 === mmMrgr .

The translation of expression (1) 1ΓRDE in RN1 and

expression (2) 2ΓRDE in RN2 is shown in figure 1a and
figure 1b, respectively.
Systems are described in timed PN (TPN) as interactions of
components that can perform a set of activities associated
with events. An event is e = (θα ,), where E∈α is the
type of an activity (action name), and θ is the firing delay.

Definition 2. A timed RGPN system is a pair RTN = <
RN, θ >, where:

>=< MGGRRN rtr ,,,, φΓ , Γ = < P, T, Pre,
Post, Test, Inh, G, Pri, Kp, l > with set of events

τEEE ∪= 0 which can be partitioned into a set 0E of

immediate events and a set τE of timed events, so that

∅=∩ τEE0 , Pri(E0) > Pri(τE). The immediate event

is drawn as a thin bar and the timed event is drawn as a
black rectangle for transitions and two embedded empty
rectangles for rewriting rules;

++ →× IRINE P||:θ is the weight function that maps

events onto real numbers +IR (delays or weight speeds). It
can be dependent of the marking. The delays

)(),(MdMe kk =θ define the duration of timed events.

If several timed events)(MEe j ∈ are concurrently

enabled in current marking for the
}0),(Pr:{ >∈∀=∈•

jijij epeEepe , either in

competition or independently, we assume that a race
competition condition exists between them. The evolution of
the model will determine whether the other timed events
have been aborted or simply interrupted by the resulting
state change. The)(),(MwMe jj =θ is the weight speed

of immediate events ej∈E0. If several enabled immediate
events are scheduled to fire at the same time in vanishing
marking M with the weight speeds, then the probability of
the enabled immediate event ej to fire is:

=)(Mq j ∑
•∈))&((

),(/),(
il pMEe

lj MewMew ,

where E(M) is the set of enabled events in M. An
immediate event has a zero firing time.
n

III. P SYSTEMS AND TIMED MEMBRANE PETRI NETS
Here we give a brief review of P systems and its relation

with TMPN. A full guide for P systems can be referred to
[4]. The main components of P systems are membrane
structures consisting of hierarchically embedded membranes
in the outermost skin membrane. Each membrane encloses a
region containing a multisets of objects and possibly other
membranes.

In general, a basic evolution-communication P system
with active membranes (of degree n ≥ 0) is PΓ =(O, H,
µ , Ω , (ρ ,π)), where: O is the alphabet of objects; H is a
finite set of labels for membranes; µ is a membrane
structure consisting of n membranes labeled with elements h
= 0,1,…, n-1 in H; Ω is the configuration, that is mapping
from membrane h of PΓ (nodes in µ) to multisets of

objects Ωω ∈h , }{ , ihh ωω = , i=0,1,…, ||O present in the

corresponding region of membrane h, then the system is
created; ρ andπ is respectively the set of rules

}{ , jhh ρρ = and its priorities }{ , jhh ππ = , j=0,1,…, k. The

active membranes can be of two forms of rules jh,ρ : a) the

object rules (OR), i.e., evolving and communication rules
concerning the objects; b) the membranes rules (MR), i.e.,
the rewriting rules about the structural modification of
membranes.

The structure of a membrane is: hlliih]][,...,][,[ω ,

and each object rule ρρ ∈jh, has a form:

a)

b)

Figure 1. Translation: a) 1ΓRDE in RN1 and b) 2ΓRDE in RN2.

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 152

},{:, δδωωωωρ ¬×→
linoutherejh , here l belongs to the

label set of its sub- membranes, and hereω , outω , and

linω denote the multisets of objects which will be kept in

this membrane, send out of this membrane, and send into its
sub-membrane labeled by l, respectively. The δ denotes the
dissolving rule.

Here we present the TMPN for encoding of P systems
mentioned above into descriptive dynamic rewriting TPN as
a RTN. The basis for TMPN is a membrane RTN that is a DE
net structure comprising: places and its capacity, transitions
and its priority, and guard functions, weighed directed arcs
from places to transitions and vice-versa, weighed inhibitory
and test arcs.

Consider the P system PΓ . The encoding of PΓ into
TMPN is decomposed into two separate steps. First, for
every membrane [h]h we associate: to each object hih ωω ∈,

one place [h ihi pm ,
0]h with the initial marking 0

, ihm , and to

each rule ∈jh,ρ ρ one event [h jhe ,]h, that acts on this

membrane. Second, for every membrane [h]h we define the
DEh of RTNh that corresponds to the initial configuration of
the P system PΓ as [h DEh]h .

Let u , v and u ′ , v′ be a multisets of objects.

Definition 3. The TMPN of degree n ≥ 0, is a construct

hhh
n
h DEDM][01

0
−
=∨= , where:

• The hhhhjh vu]][[:, ′′′ →ρ evolving object rule

with multiset of objects u , v which will be kept in ''][hh

is encoded as:

hhvhjhtuhhh pp]]|[[,,, ′′ ;

• The antiport rule, that realizes a synchronization of
object c with the objects of the type

hhhhhhhhih uvvu]][[]][[:, ′′′′′ ′′→ρ , is encoded as:

hhvhuhihtchvhuhhh ppppp]])(|)~([[,,,,,, ′′′′′′′′′′ ◊⋅⋅ .

Also, the hhhhhhhhkh uu]][[]][[:, ′′′′′ ′→ρ sym-

port rule that moves objects from inside to outside a
membrane, or vice-versa is encoded as:

hhuhkhtchuhhh ppp]]|)~([[,,,, ′′′′′′′ ⋅ .

Because the configuration means both a membrane
structure and the associated multisets of objects, we need the
rewriting rules for processing membranes and multisets of
objects as: MR = {mr0, mr1, mr2, mr3, mr4, mr5, mr6}.

The above membrane rewriting rules (realized by the
rewriting events in DE’s) are defined as:

• mr0: Change rewriting rule, that changes, in run-time,
the current structure and the multisets of objects of
membrane h, encoded by descriptive expression hDE ′ and

its marking hM ′ in a new structure hED ′′ with new marking

hM ′′ :

hhhhhhhhhh EDDE]])[[]][[′′′′′′ ′> ;

• mr1: Dissolve rewriting rule says that the membrane h′
is dissolved and the objects as hM ′ and sub-membranes of

membrane h′ belong now to its parent membrane h. The
skin membrane cannot be dissolved:

hhhhhhhhh EDDEDE][]][[′′′′ > ,

hhh MMM ′+=′ ;
 • mr2: Create rewriting rule, says that the new

membrane h′ with hED ′′′ and hM ′′′ is created in
membrane h, the rest remain in the parent membrane h:

hhhhhhhhh EDEDDE]][[][′′′ ′′′> ,

hhh MMM ′′′+′= ;
• mr3: Divide rewriting rule says that the objects and sub-

membranes are reproduced and added into membrane h′
and into h ′′ , respectively:

hhhhhhh DEDE ′′][[][> hhhh DE]][′′′′ ;
• mr4: Merge rewriting rule says that the objects of

membrane h′ and h ′′ are added to a new membrane h is:

hhhhhhhhh EDED []][][[>′′′′′′′′′ ′′′
hhh EDED]′′′ ′′∨′

with new marking hhh MMM =′′+′ ′′′ ;
• mr5: Separate rewriting rule is the counterpart of the

Merge rewriting rule and is done by a:

hhhhhh EDED ′′′′ ′′∨′ [[][> hhhhhh EDED]][] ′′′′′′′′ ′′′

with meaning that the content of membrane h is split into
two membranes, with labels h′ and h ′′ , and the new
marking is hhh MMM ′′′+′= ;

• mr6: Move rewriting rule where a membrane h ′′ can be
moved out or moved into a membrane h′ as a whole is done
by a:

hhhhhhhhh DEDE []]][[[>′′′′′′′′′

hhhhhhh DEDE]][][′′′′′′′′′

or hhhhhhhhhh DEDE ′′′′′′′′′′ [[]][][[>

hhhhhh DEDE]]][′′′′′′′′
with their marking, respectively. n
Thus, using the TMPN facilitates a compact and flexible

specification and verification of parallel computing models.
In order to describe the details of this approach, we

present a simple but illustrative example of encoding PΓ
into TMPN.

Consider the following P system 1PΓ of degree 3:

012210],],][,[,[ab=µ , },,,{ dcbaO = ,

}{0 b=ω , }{1 a=ω , 21,00 :{ inddc →= ρρ ,

},: 12,0 inbb →ρ }{ 2,01,00 πππ >= , (3)

21,11 :{ inouthere dcba →= ρρ , },:2,1 δρ outab →

},:2,1 δρ outab → ∅=1π , ,2 ∅=ω ∅=2π .

The maping solution for the initial configuration of 1PΓ

described by (3) is given by the TMPN, where every object

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 153

can be represented as a place labeled as the name of objects:
aplpl ==)()(1,11,0 , bplpl ==)()(2,12,0 ,

cpl =)(3,0 , dplpl ==)()(4,01,2 .

The number of tokens in this place denotes the number of
occurrences of this object.

Every object-rule can be represented by an event type
transition. For example, in membrane 0, the
rule 21,0 : inddc →ρ , can be described by a transition 1,0t .

Because two copies of object d are send to membrane 2, the
weight of the arc),(1,21,0 pt is 2, which denotes that
whenever the rule 1,0ρ is performed, one copy of object c

will be removed in membrane 0 and two copies of object d
will be sent to membrane 2.

Up to now, all objects and rules of 1PΓ are encoded in

DM1-net as following:

012221100]]][[[1 DEDEDEDM = ,

]2[||1 1,21,03,01,22,02,01,00 pppppDE tt ∨∨= ,

)|(|1 1,21,01,12,13,01,11,11 pppppDE rt ◊◊= , (4)

2,11,21,22 | ppDE t= ,)(Pr 1,0ti)>)(Pr 2,0ti ,

2101 DEDEDEDE ∨∨= .

The dissolving rule δ=1mr is represented in DM1-net
by the following mr1 rule:

11:1,1 MDDMr ′> , 000][1 EDMD ′=′ ,

,2|]2[2|1 2,04,03,01,00 2,01,0
ppppED tt∨=′ (5)

))1,2,((),(1,22,13,0
11

1,1 pppMMrgr DEDE == ,

where 1DEM is the current marking of 1DM .

The translation of P system 1PΓ into DM1-net described

by (4) and DM’1-net described by (5) is shown in figure 2
and figure 3, respectively.

The reachability graph of DM1-net in the listing form is:

1
111,12,0

1
0 [)1,1(DEDE MUppM >= ;

1
221,22,13,0

1
1 [)1,2,1(EDDE MUpppM ′>= ;

1
334,02,01,0

1
2 [)2,2,1(EDED MUpppM ′′ >= ;

1
444,02,01,0

1
3 [)1,3,1(EDED MUpppM ′′ >= ;

[)4,1(2,01,0
1

4 ppM ED =′ , where },,{ 1,21,11,02 trtU =

 },,{ 1,21,11,02 trtU = ; }{ 3,043 tUU == .

Figure 2. Translation of 1DE into DM1-net for 1PΓ .

Figure 3. Translation of 1ED ′ into 1MD ′ -net for 1PΓ .

IV. VMPN TOOL OVERVIEW
VMPN is a software tool for construction, editing, visual

simulation and analysis of untimed and timed RGPNs and
TMPN models. Developing Environment: Microsoft Visual
Studio 6. This tool consists of a Graphical User Interface
(GUI), an animation modeling and a visualization
component (see Fig. 3 and Fig. 4).

Figure 4. Graphical User Interface.

This editor allows us to create, save and load Petri nets
according to the last standard PNML (Petri Net Markup
Language [6]) for Petri nets. The GUI (figure 4) is designed
with multi-document capability, allowing several nets to be
edited simultaneously. This allows the user to study the
behavior of the net by observing the token game. The GUI

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 154

has only few scrollbars and dialog boxes.

Main toolbar of GUI contains all the necessary tools for
designing, editing and analyzing the topology of the VMPN,
scale tool, Formula Editor (figure 5) and help button: a)
Arrow – the purpose of this tool is to select and to move
objects, to move selections and the changing object’s
attributes; b) Designing are used to design the RGPN or
TMPN; c) Editing – are represented by standard copy, paste
and cut buttons and grid button – showing and hiding the
grid; d) History Graph – invokes the new process thread to
start qualitative analysis.

Object Inspector provides easy and fast access to every

RGPN or TMPN objects property. That while changing
property of the selected object, VMPN tool automatically
changes the values of all the items which depend on this
value and changes the general net topology of the project.
User can observe all the changes immediately by means of
the hierarchical tree of Object Inspector. It is very useful in
case the user changes the topology of the network modeled.

File browser. To make easier work with files, the File
Browser was included in VMPN application. This feature
allows us to browse all the filenames of the projects in the
Sample Directory, which makes switching between the
projects more convenient. The VMPN tool interface was
made up as a user-friendly interface by means of standard
GUI objects, so the user will easily find all necessary
attributes to use. Also, this tool provides easy access to the
most frequently used tools by providing a toolbar consisting
of ImageButtons which can be depressed to enable functions
and a collection of editing features including Cut, Copy,

Paste, and Delete to make the design process easier. The
view of the design can be altered to zoom-in and zoom-out
on portions of the design.

By providing a time parameter for each transition, we are
able to simulate the net performance. A timed RGPN and
TMPN models are simulated in two modes: auto and step by
step. In the auto-mode, transitions are fired as long as they
are enabled. In step-mode, transitions are fired according to
the step chosen by the user. In all cases, token flow due to
firing can be visualized on the screen.

Simulation is started from the separate form of a figure 6.
The description of the form:

Start- start of a network on simulation; Stop - stops of
simulation, can be continued by button Start; Time -
modeling time; the Toddler - sets speed of simulation; Close
- to close a Window. The panel for creation of diagrams as a
chosen parameter is displayed in the diagram. For a choice
of parameter all over again it is necessary to choose an
object, then his parameter and press the button Add graph.
For displaying a part of the form with diagrams press " Show
". If the diagrams are not necessary to be present it is
possible to hide them, pressing "Hide ". If the diagram is
used for inserting into a report or in another program, it can
be done with the help of the buttons "Save to file" -
preservation of the diagram in a file of a format name.bmp
or copy to clipboard - to copy in the buffer of an exchange.
The Simulator supports all types of objects realized in the
program. The step of time simulation gets out automatically.

However, it may occur situations when only immediate
transitions (rewriting rules) are enabled. When a transition
fires, tokens will be symbolically moved along the input arcs
from the input places to the transition and along the output
arcs from the transition to the output places, according to the
various arc multiplicities. Viewing the simulation
visualization in this manner significantly enhances the user’s
understanding of the nets dynamic behavior, and is very
useful in presentations to non-specialists and of course for
functional verifying (debugging) of the model behavior.

V. CONCLUSIONS
We have developed a VMPN tool to analyze, simulate,

and verify computing process systems with timed GRPN and
TMPN, that can modify, in run-time, their own structure by
rewriting some rules of their subnet components.

The integration within the same graphical user interface of
the facilities for the model construction and structural
analysis algorithms for model validation, and of the control
panels for performing the visual and interactive simulation,
emphasizes the importance of including in a simulation
experiment both validation and evaluation aspects of timed
GRPN and/or TMPN models.

The animation of the TMPN models, performed only
when desired by the user, appears to be a powerful tool that
complements the structural results for the debugging and
tuning of the models used for the performance analysis.

As further work, we will develop and integrate hybrid

 Figure 5. Formula Editor of VMPN.

 Figure 6. Simulation form of VMPN.

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 155

TMPN models in VMPN tool and it will be possible to
editing, visual simulation, behavioral and performance
analysis.

REFERENCES
[1] Calzarossa, M., and Marie, R. Tools for Performance Evaluation.

Performance Evaluation 33, 1998, pp. 1-3.
[2] Cook, S., Harrison, R., and Wernik, P. A simulation model of self-

organising evolvability in software systems. In: Proceedings of the 1-
st IEEE International Workshop on Software Evolvability, Hungary,
2005, pp. 17-22.

[3] Compton, K., and Hauck, S., Reconfigurable Computing: a Survey of
Systems and Software. ACM Computing Surveys (CSUR), vol. 34,
No. 2, 2002, pp. 171-210.

[4] Guţuleac, E., Descriptive Timed Membrane Petri Nets for Modelling
of Parallel Computing. International Journal of Computers,
Communications & Control, No: 3, Vol. I, Oradea, România, 2006,
pp. 33-39.

[5] Guţuleac, E., Descriptive self-reconfigurable generalized stochastic
Petri nets for performance modeling of computer systems, Buletinul
Institutului Politehnic din Iaşi, Tomul LI (LV), Fasc. 1-4, Automatica
şi Calculatoare, România, 2005, pp. 121-136.

[6] Guţuleac, E., Mocanu M., Descriptive Dynamic Rewriting GSPN-
based Performance Modeling of Computer Systems, In Proc. of the

15th Intern. Conf. CSCS15, 25-27 May 2005, Bucureşti, România,
2005, pp. 656-661.

[7] Kleijn J., Koutny M., Rozenberg G., Towards a Petri Net Semantics
for Membrane Systems. In Proceedings of the WMC6 2005, July 18-
21, Wien, Austria, 2005, pp. 439-459.

[8] Home Page of PNML, Available: http://www.informatik.hu-
berlin.de/top/pnml/

[9] Păun, Gh., Membrane Computing. An Introduction, Natural
computing Series. ed. G. Rozenberg, Th. Back, A.E. EibenJ.N. Kok,
H.P. Spaink, Leiden Center for Natural Computing, Springer–Verlag,
Berlin, 2002, p. 420.

[10] Petri nets world - Petri nets tools database.
http://www.informatik.uni-
hamburg.de/TGI/PetriNets/tools/quick.html.

[11] Sekanina, L., Evolvable computing by means of evolvable
components. Kluwer Academic Publishers, Natural Computing vol 3,
2004, pp. 323–355.

[12] Shrivastava, S., and Wheater, S., Architectural Support for Dynamic
Reconfiguration of Large Scale Distributed Applications. In:
Proceedings of the 4th International Conference on Configurable
Distributed Systems, May 1998, pp. 10–17.

[13] Calin CIUFUDEAN, George MAHALU, Modelling Artificial Social
Systems with Petri Nets, Advances in Electrical and Computer
Engineering, Suceava, Romania, ISSN 1582-7445, No 2/2002,
volume 2 (9), pp. 10-14.

http://www.informatik.hu
http://www.informatik.uni

