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Abstract—In order to capture the compartmentalization and 

the behavior of membrane systems for performance modeling of 
parallel and distributed computing, we present the Descriptive 
Timed Membrane Petri Nets (TMPN) that can modify, in run-
time, their own structure by rewriting some of their descriptive 
expression components. Furthermore, this descriptive approach 
facilitates the understanding of complex models and their 
component-based construction as well as the application of 
modern computer engineering concepts. A Visual Membrane 
Petri Nets (VHPN) software tool that offers a graphical user 
interface has been developed and described for visual 
simulation of TMPN models. 
 

Index Terms—membrane systems, performance modeling, 
Petri nets, rewriting, reconfigurable, software tool 

I. INTRODUCTION 
Recent technological achievements require advances 

beyond the existing computational models in order to be 
used effectively. Thus, the software architectures provide a 
high-level system description in terms of a collection of 
computational components and connectors. Dynamic 
software architectures are those that change their structure 
and enact the modifications during the systems execution. 

Also, in mobile ad-hoc networks and sensor networks, it is 
critical to accurately represent dynamic behavior in a precise 
and rigorous style. The dynamic behavior includes not only 
state change, but also change in structure [2, 11, 12]. 

Pragmatic aspects of current and future reconfigurable 
software architectures, computer systems, mobile ad-hoc 
networks and sensor networks, will be modeled so that 
realistic estimations of efficiency can be given for 
algorithms in these new settings.  

However, the main technical challenge is to find a way to 
represent the structural changes of networks behavior, 
consistent with the conventional representation of dynamic 
state change, synchronization, concurrency, non-
determinism. The representation must be mathematically 
based and explicitly represent timed structural behavior 
when run-time self-modifying systems are considered. 

To do this requires the use of rigorous methods for 
specification, design, verification, performance evaluation 
which have been developed, including finite state machines, 
Petri nets [3, 5, 6] and P systems [9, 7], but they have 
focused on the representation of state change. 

In previous studies [4, 5, 6] using descriptive expressions 
(DE), we have introduced the dynamic marked-controlled 
rewriting generalized Petri net (RGPN) and timed membrane 
Petri nets (TMPN) for performance modeling of parallel and 
distributed computing where a structure change and moving 
of membrane is described as transition rewriting rules. With 
RGPN and TMPN, we can easily and directly model 
concurrent and distributed systems that change their 
structure dynamically. 

Traditional Petri net simulation environments     [10], 
however, are not an adequate tool for our purposes for 
analysis of TMPN models, as they make use of the fixed 
static structure of nets. 

In this paper, we present the Visual Membrane Petri Nets 
(VMPN) tool for the verification and performance modeling 
and of marked-controlled RGPN and TMPN that can in run-
time modify their own structure by rewriting some of their 
components. 

The paper is organized as follows. In Section 2 we present 
the model definition of timed RGPN. In Section 3 we 
consider the P systems and model definition of timed TMPN. 
Subsequently in Section 4 we considered the VMPN tool. 
Conclusions are drawn in Section 5. 

II. DYNAMIC REWRITING TIMED PETRI NETS 
In this section we introduce the model of descriptive 

dynamic net rewriting PN system. Let YX ρ be a binary 
relation. The domain of ρ  is the Dom( ρ ) = Yρ and the 
codomain of ρ  is the Cod( ρ ) = ρX .  

 
Definition 1. A descriptive dynamic marked-controlled 

rewriting generalized Petri net (RGPN) system is 6-tuple: 
>=< MGGRRN rtr ,,,, φΓ , where Γ = < P, T, 

Pre, Post, Test, Inh, G, Pri, Kp> is a generalized Petri net 
structure [??]; 

}...,,{ 1 krrR =  is a finite set of rewriting rules about 
the runtime structural modification of net so 
that ∅=∩∩ RTP .  

In the graphical representation, the rewriting rule is 
drawn as two embedded empty rectangles. We let 

RTE ∪=  denote the set of events of the net; 
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},{: RTE →φ is the function that indicates for every 
rewriting rule the type of event can occur; 

→× +
||: P

tr INRG {True,False} is the transition rule 
guard function associated with Rr ∈ , 
and →× +

||: P
r INRG {True, False} is the rewriting rule 

guard function defined for each rule of Rr ∈ , respectively. 
For Rr ∈∀ , the trtr GMg ∈)(  and rr GMg ∈)(  will be 
evaluated in each marking and if they are evaluated to True, 
the rewriting rule r is enabled, otherwise it is disabled. 
Default value of trtr GMg ∈)(  is True and for rr GMg ∈)(  
is False).  

Let A= < Pre, Post, Test, Inh > be a set of arcs that 
belong to net Γ  and >=< MRRN ,Γ  and 

>=< rtr GGRR ,,, φΓΓ  be represented by the 
descriptive expression DERГ and DERN, respectively [5, 6]. A 
dynamic rewriting structure modifying the rule Rr ∈  of RN 
is a map WL DEDEr >: , where the codomain of the 
rewriting operator, > , is a fixed descriptive 

expression LDE of a subnet LRN of current net RN, where 

RNRNL ⊆  with PPL ⊆ , EEL ⊆ and set of arcs 

AAL ⊆ and the domain of >  is a descriptive 

expression WDE of a new wRN  subnet 

with PPw ⊆ , EEw ⊆  and set of arcs WA . The rewriting 
operator, > , represents a binary operation which produces a 
structure change in DERN of the RN net by replacing 
(rewriting) the fixed current LDE of the subnet LRN  

( LDE and LRN  are dissolved) by the new WDE of subnet 

WRN  that now belongs to the new modified resulting 

NRDE ′  of the net WL RNRNNRNR ∪=′ )\(  with 

WL PPPP ∪=′ )\(  and WL EEEE ∪=′ )\( , 

WL AAAA +−=′ )(  where the meaning of \ (∪) is 

operation of removing  (adding) LRN from ( WRN  to) net 
RN. In this new net NR ′ , obtained by the execution of the 
enabled rewriting rule Rr ∈ , the places and events with the 
same attributes which belong to NR ′ are fused. By default, 
the rewriting rules ∅>LDEr :  or WDEr >∅:  describe 
the rewriting rule which maintains )\( LRNRNNR =′  or 

)( WRNRNNR ∪=′ . A state of a RN net is the pair 
( MR ,Γ ), where ΓR  is the configuration of the net 
together with a current marking M.  Also, the pair 
( 00 , MRΓ ) with PP ⊆0 , EE ⊆0  and marking M0 is called 
the initial state of the net.                          n                                         

Enabling and Firing of Events. The enabling of events 
depends on the marking of all places. We say that a 
transition jt  of the event je  is enabled in current marking 

M if the following enabling condition ),( Mtec j  is 

verified: 
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rewriting rule Rr j ∈  is enabled in current marking M if the 

following enabling condition ),( Mrec jtr  is verified: 
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Let the T(M) and  R(M), ∅=∩ )()( MRMT , be the 
set of enabled transitions and rewriting rules in current 
marking M, respectively. Let the )()()( MRMTME ∪= , 
be the set of enabled events in a current marking M. The 
event )(MEe j ∈ fires if no other event )(MEek ∈  with 

higher priority has been enabled. Hence, for je event if 

))),(()()(( FalseMrgrt jtrjjjj =∧=∨= φφ  then the firing 

of the transition )(MTt j ∈  or of the rewriting rule 

)(MRr j ∈  changes only the current marking: 

),(),( MRMR je ′→ ΓΓ ΓΓ RR =⇔ ( and the 

MeM j ′>[  in ΓR ) ).  

Also, for the every event Ee j ∈ , if  

))),(()(( TrueMrgr jrjj =∧=φ  then the event je  

occurs at firing of the rewriting rule jr and it changes the 

configuration and marking of the current net, so that: 

),(),( MRMR jr ′Γ′→Γ , MrM j ′>[ ).  

The accessible state graph of a net ><= MRRN ,Γ  is 
the labeled directed graph whose nodes are states and whose 
arcs, which are labeled with events or rewriting rules of 
RN , are of two kinds:  

a) firing of an enabled event )(MEe j ∈ : arcs from 

state ),( MRΓ  to state ( MR ′,Γ ) labeled with event je , 

so that this event can fire in the configuration ΓR at marking 
M and leads to a new marking: 

 ⇔′′→′ ),(),(: MRMRM je ΓΓ ( ΓΓ ′= RR  and 

[ MeM j ′>[  in ΓR );  

b) change configuration: arcs from state ),( MRΓ  to 

state( MRR ′′,Γ ) labeled with the rewriting rule Rrj ∈ , 

:jr ( LL MR ,Γ )> ( WW MR ,Γ ) which represent the 

change configuration of current RN net:  

),(),( MRMR jr ′′→ ΓΓ  with  MrM j ′>[ . 
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Let we consider the RN1 net, given by the following 

descriptive expression: 

1211 1
| ΓΓ RrR EDppDE ′∨= ,      

)(|||)( 51343521 21
ppppppED tttR ◊⋅=′ Γ , (1) 

)1,5( 510 ppM = , 211 : ΓΓ RR DEDEr > , 

)0(&)3(),( 511 === mmMrg r . 

Also, for the rewriting rule jr  is required to identify if 

LRN net belongs to the ΓR . The firing of enabled events or 
rewriting rules modify the current marking and/or modify the 
structure and the current marking of RN1 in RN2 given by: 

2212 1
| ΓΓ RtR EDppDE ′∨= ,

2543622 432
|||)( ΓΓ RtttR EDpppppED ′′∨⋅=′ , 

          )(|| 61532 25
ppppED rtR ◊=′′Γ , (2) 

12
1

12 : ΓΓ RR DEDErr >−= , )1,3,1( 321 pppM = ,  

      )1(&)4(),( 512 === mmMrgr . 

The translation of expression (1) 1ΓRDE  in RN1 and 

expression (2) 2ΓRDE  in RN2 is shown in figure 1a and 
figure 1b, respectively. 
Systems are described in timed PN (TPN) as interactions of 
components that can perform a set of activities associated 
with events. An event is e = ( θα , ), where E∈α  is the 
type of an activity (action name), and θ  is the firing delay.  
 

Definition 2. A timed RGPN system is a pair RTN = < 
RN, θ  >, where:  

>=< MGGRRN rtr ,,,, φΓ , Γ = < P, T, Pre, 
Post, Test, Inh, G, Pri, Kp, l > with set of events 

τEEE ∪= 0 which can be partitioned into a set 0E  of 

immediate events and a set τE of timed events, so that 

∅=∩ τEE0 , Pri(E0) > Pri( τE ). The immediate event 

is drawn as a thin bar and the timed event is drawn as a 
black rectangle for transitions and two embedded empty 
rectangles for rewriting rules;   

++ →× IRINE P||:θ is the weight function that maps 

events onto real numbers +IR (delays or weight speeds). It 
can be dependent of the marking. The delays 

)(),( MdMe kk =θ  define the duration of timed events.  

If several timed events )(MEe j ∈ are concurrently 

enabled in current marking for the    
}0),(Pr:{ >∈∀=∈•

jijij epeEepe , either in 

competition or independently, we assume that a race 
competition condition exists between them. The evolution of 
the model will determine whether the other timed events 
have been aborted or simply interrupted by the resulting 
state change. The )(),( MwMe jj =θ is the weight speed 

of immediate events ej∈E0. If several enabled immediate 
events are scheduled to fire at the same time in vanishing 
marking M with the weight speeds, then the probability of 
the enabled immediate event ej to   fire is: 

=)(Mq j ∑
•∈ ))&((

),(/),(
il pMEe

lj MewMew ,      

where E(M)  is the set of enabled events in M. An 
immediate event has a zero firing time.                               
n  

 

III. P SYSTEMS AND TIMED MEMBRANE PETRI NETS 
Here we give a brief review of P systems and its relation 

with TMPN. A full guide for P systems can be referred to 
[4]. The main components of P systems are membrane 
structures consisting of hierarchically embedded membranes 
in the outermost skin membrane. Each membrane encloses a 
region containing a multisets of objects and possibly other 
membranes.  

In general, a basic evolution-communication P system 
with active membranes (of degree n ≥  0) is PΓ =(O, H, 
µ , Ω , ( ρ ,π )), where: O is the alphabet of objects; H is a 
finite set of labels for membranes; µ  is a membrane 
structure consisting of n membranes labeled with elements h 
= 0,1,…, n-1 in H; Ω  is the configuration, that is mapping 
from membrane h of PΓ  (nodes in µ ) to multisets of 

objects Ωω ∈h , }{ , ihh ωω = , i=0,1,…, ||O  present in the 

corresponding region of membrane h, then the system is 
created; ρ  andπ is respectively the set of rules 

}{ , jhh ρρ = and its priorities }{ , jhh ππ = , j=0,1,…, k. The 

active membranes can be of two forms of rules jh,ρ : a) the 

object rules (OR), i.e., evolving and communication rules 
concerning the objects; b) the membranes rules (MR), i.e., 
the rewriting rules about the structural modification of 
membranes.  

The structure of a membrane is: hlliih ]][,...,][,[ ω , 

and each object rule ρρ ∈jh,  has a form: 

a) 

b) 

Figure 1. Translation: a) 1ΓRDE  in RN1 and b) 2ΓRDE in RN2. 
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},{:, δδωωωωρ ¬×→
linoutherejh , here l belongs to the 

label set of its sub- membranes, and hereω , outω , and 

linω denote the multisets of objects which will be kept in 

this membrane, send out of this membrane, and send into its 
sub-membrane labeled by l, respectively. The δ denotes the 
dissolving rule. 

Here we present the TMPN for encoding of P systems 
mentioned above into descriptive dynamic rewriting TPN as 
a RTN. The basis for TMPN is a membrane RTN that is a DE 
net structure comprising: places and its capacity, transitions 
and its priority, and guard functions, weighed directed arcs 
from places to transitions and vice-versa, weighed inhibitory 
and test arcs.  

Consider the P system PΓ . The encoding of PΓ  into 
TMPN is decomposed into two separate steps. First, for 
every membrane [h  ]h we associate: to each object hih ωω ∈,  

one place [h ihi pm ,
0 ]h with the initial marking 0

, ihm , and to 

each rule  ∈jh,ρ ρ one event [h  jhe ,  ]h, that acts on this 

membrane. Second, for every membrane [h   ]h we define the 
DEh of RTNh that corresponds to the initial configuration of 
the P system PΓ as [h   DEh   ]h .  

Let u , v and u ′ , v′  be a multisets of objects. 

 
Definition 3.  The TMPN of degree n ≥  0,  is a construct  

hhh
n
h DEDM ][ 01

0
−
=∨= , where: 

•  The hhhhjh vu ]][[:, ′′′ →ρ  evolving object rule 

with multiset of objects u , v  which will be kept in '' ][ hh  

is  encoded as: 

hhvhjhtuhhh pp ]]|[[ ,,, ′′ ; 

•  The antiport rule, that realizes a synchronization of 
object c with the objects of the type 

hhhhhhhhih uvvu ]][[]][[:, ′′′′′ ′′→ρ , is encoded as: 

hhvhuhihtchvhuhhh ppppp ]])(|)~([[ ,,,,,, ′′′′′′′′′′ ◊⋅⋅ .  

Also, the hhhhhhhhkh uu ]][[]][[:, ′′′′′ ′→ρ  sym-

port rule that moves objects from inside to outside a 
membrane, or vice-versa is encoded as:  

hhuhkhtchuhhh ppp ]]|)~([[ ,,,, ′′′′′′′ ⋅ . 

Because the configuration means both a membrane 
structure and the associated multisets of objects, we need the 
rewriting rules for processing membranes and multisets of 
objects as: MR = {mr0, mr1, mr2, mr3, mr4, mr5, mr6}. 

The above membrane rewriting rules (realized by the 
rewriting events in DE’s)   are defined as:  

•  mr0: Change rewriting rule, that changes, in run-time, 
the current structure and the multisets of objects of 
membrane h, encoded by descriptive expression hDE ′  and 

its marking hM ′  in a new structure hED ′′ with new marking 

hM ′′ : 

hhhhhhhhhh EDDE ]])[[]][[ ′′′′′′ ′> ; 

•  mr1: Dissolve rewriting rule says that the membrane h′  
is dissolved and the objects as hM ′  and sub-membranes of 

membrane h′  belong now to its parent membrane h. The 
skin membrane cannot be dissolved: 

hhhhhhhhh EDDEDE ][]][[ ′′′′ > , 

hhh MMM ′+=′ ; 
 •  mr2: Create rewriting rule, says that the new 

membrane h′ with hED ′′′ and hM ′′′  is created in 
membrane h, the rest remain in the parent membrane h: 

hhhhhhhhh EDEDDE ]][[][ ′′′ ′′′> ,

hhh MMM ′′′+′= ; 
•  mr3: Divide rewriting rule says that the objects and sub-

membranes are reproduced and added into membrane h′  
and into h ′′ , respectively: 

hhhhhhh DEDE ′′ ][[][ > hhhh DE ]][ ′′′′ ; 
•  mr4: Merge rewriting rule says that the objects of 

membrane h′ and h ′′ are added to a new membrane h is: 

hhhhhhhhh EDED []][][[ >′′′′′′′′′ ′′′
hhh EDED ]′′′ ′′∨′  

with new marking hhh MMM =′′+′ ′′′ ; 
•  mr5: Separate rewriting rule is the counterpart of the 

Merge rewriting rule and is done by a: 

hhhhhh EDED ′′′′ ′′∨′ [[][ > hhhhhh EDED ]][] ′′′′′′′′ ′′′  

with meaning that the content of membrane h is split into 
two membranes, with labels h′ and h ′′ , and the new 
marking is hhh MMM ′′′+′= ;  

•  mr6: Move rewriting rule where a membrane h ′′ can be 
moved out or moved into a membrane h′  as a whole is done 
by a: 

hhhhhhhhh DEDE []]][[[ >′′′′′′′′′  

hhhhhhh DEDE ]][][ ′′′′′′′′′   

or   hhhhhhhhhh DEDE ′′′′′′′′′′ [[]][][[ >  

hhhhhh DEDE ]]][ ′′′′′′′′  
with their marking, respectively.                                    n  
Thus, using the TMPN facilitates a compact and flexible 

specification and verification of parallel computing models. 
In order to describe the details of this approach, we 

present a simple but illustrative example of encoding PΓ  
into TMPN.  

Consider the following P system 1PΓ of degree 3:  

012210 ],],][,[,[ ab=µ , },,,{ dcbaO = ,  

}{0 b=ω , }{1 a=ω , 21,00 :{ inddc →= ρρ , 

},: 12,0 inbb →ρ }{ 2,01,00 πππ >= , (3) 

 

21,11 :{ inouthere dcba →= ρρ , },:2,1 δρ outab →  

},:2,1 δρ outab → ∅=1π , ,2 ∅=ω  ∅=2π . 

 
The maping solution for the initial configuration of 1PΓ  

described by (3) is given by the TMPN, where every object 
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can be represented as a place labeled as the name of objects:  
aplpl == )()( 1,11,0 , bplpl == )()( 2,12,0 , 

cpl =)( 3,0 , dplpl == )()( 4,01,2 . 
 

The number of tokens in this place denotes the number of 
occurrences of this object.  

Every object-rule can be represented by an event type 
transition. For example, in membrane 0, the 
rule 21,0 : inddc →ρ , can be described by a transition 1,0t . 

Because two copies of object d are send to membrane 2, the 
weight of the arc ),( 1,21,0 pt is 2, which denotes that 
whenever the rule 1,0ρ  is performed, one copy of object c 

will be removed in membrane 0 and two copies of object d 
will be sent to membrane 2. 

 
Up to now, all objects and rules of 1PΓ  are encoded in 

DM1-net as following:  

012221100 ]]][[[1 DEDEDEDM = , 

]2[||1 1,21,03,01,22,02,01,00 pppppDE tt ∨∨= , 

)|(|1 1,21,01,12,13,01,11,11 pppppDE rt ◊◊= , (4) 

2,11,21,22 | ppDE t= , )(Pr 1,0ti )> )(Pr 2,0ti , 

2101 DEDEDEDE ∨∨= . 
 

The dissolving rule δ=1mr  is represented in DM1-net 
by the following mr1 rule: 

11:1,1 MDDMr ′> , 000 ][1 EDMD ′=′ ,     

,2|]2[2|1 2,04,03,01,00 2,01,0
ppppED tt∨=′  (5) 

))1,2,((),( 1,22,13,0
11

1,1 pppMMrgr DEDE == , 

where 1DEM  is the current  marking of 1DM . 
 
The translation of P system 1PΓ  into DM1-net described 

by (4) and DM’1-net described by (5) is shown in figure 2 
and figure 3, respectively. 

 
The reachability graph of DM1-net in the listing form is: 

1
111,12,0

1
0 [)1,1( DEDE MUppM >= ;                 

1
221,22,13,0

1
1 [)1,2,1( EDDE MUpppM ′>= ; 

1
334,02,01,0

1
2 [)2,2,1( EDED MUpppM ′′ >= ;   

1
444,02,01,0

1
3 [)1,3,1( EDED MUpppM ′′ >= ;  

[)4,1( 2,01,0
1

4 ppM ED =′ ,  where },,{ 1,21,11,02 trtU =  

 },,{ 1,21,11,02 trtU = ; }{ 3,043 tUU == . 

 

 
Figure 2. Translation of 1DE  into DM1-net for 1PΓ . 
 
 

 
Figure 3. Translation of 1ED ′  into 1MD ′ -net for 1PΓ . 
 

IV. VMPN TOOL OVERVIEW 
VMPN is a software tool for construction, editing, visual 

simulation and analysis of untimed and timed RGPNs and 
TMPN models. Developing Environment: Microsoft Visual 
Studio 6. This tool consists of a Graphical User Interface 
(GUI), an animation modeling and a visualization 
component (see Fig. 3 and Fig. 4).  

 
 

 
Figure 4. Graphical User Interface. 
 

This editor allows us to create, save and load Petri nets 
according to the last standard PNML (Petri Net Markup 
Language [6]) for Petri nets. The GUI (figure 4) is designed 
with multi-document capability, allowing several nets to be 
edited simultaneously. This allows the user to study the 
behavior of the net by observing the token game. The GUI 
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has only few scrollbars and dialog boxes. 
 

 
 

Main toolbar of GUI contains all the necessary tools for 
designing, editing and analyzing the topology of the VMPN, 
scale tool, Formula Editor (figure 5)  and help button: a) 
Arrow – the purpose of this tool is to select and to move 
objects, to move selections and the changing object’s 
attributes; b) Designing are used to design the RGPN or 
TMPN; c) Editing – are represented by standard copy, paste 
and cut buttons and grid button – showing and hiding the 
grid; d)  History Graph – invokes the new process thread to 
start qualitative analysis.  

 
 

 
Object Inspector provides easy and fast access to every 

RGPN or TMPN objects property. That while changing 
property of the selected object, VMPN tool automatically 
changes the values of all the items which depend on this 
value and changes the general net topology of the project. 
User can observe all the changes immediately by means of 
the hierarchical tree of Object Inspector. It is very useful in 
case the user changes the topology of the network modeled.  

 

File browser. To make easier work with files, the File 
Browser was included in VMPN application. This feature 
allows us to browse all the filenames of the projects in the 
Sample Directory, which makes switching between the 
projects more convenient. The VMPN tool interface was 
made up as a user-friendly interface by means of standard 
GUI objects, so the user will easily find all necessary 
attributes to use. Also, this tool provides easy access to the 
most frequently used tools by providing a toolbar consisting 
of ImageButtons which can be depressed to enable functions 
and a collection of editing features including Cut, Copy, 

Paste, and Delete to make the design process easier. The 
view of the design can be altered to zoom-in and zoom-out 
on portions of the design. 

 

By providing a time parameter for each transition, we are 
able to simulate the net performance. A timed RGPN and 
TMPN models are simulated in two modes: auto and step by 
step. In the auto-mode, transitions are fired as long as they 
are enabled. In step-mode, transitions are fired according to 
the step chosen by the user. In all cases, token flow due to 
firing can be visualized on the screen.  

 

Simulation is started from the separate form of a figure 6. 
The description of the form: 

 

Start- start of a network on simulation; Stop - stops of 
simulation, can be continued by button Start; Time - 
modeling time; the Toddler - sets speed of simulation; Close 
- to close a Window. The panel for creation of diagrams as a 
chosen parameter is displayed in the diagram. For a choice 
of parameter all over again it is necessary to choose an 
object, then his parameter and press the button Add graph. 
For displaying a part of the form with diagrams press " Show 
". If the diagrams are not necessary to be present it is 
possible to hide them, pressing "Hide ". If the diagram is 
used for inserting into a report or in another program, it can 
be done with the help of the buttons "Save to file" - 
preservation of the diagram in a file of a format name.bmp 
or copy to clipboard - to copy in the buffer of an exchange. 
The Simulator supports all types of objects realized in the 
program. The step of time simulation gets out automatically.  

 

However, it may occur situations when only immediate 
transitions (rewriting rules) are enabled. When a transition 
fires, tokens will be symbolically moved along the input arcs 
from the input places to the transition and along the output 
arcs from the transition to the output places, according to the 
various arc multiplicities. Viewing the simulation 
visualization in this manner significantly enhances the user’s 
understanding of the nets dynamic behavior, and is very 
useful in presentations to non-specialists and of course for 
functional verifying (debugging) of the model behavior. 

 

V. CONCLUSIONS 
We have developed a VMPN tool to analyze, simulate, 

and verify computing process systems with timed GRPN and 
TMPN, that can modify, in run-time, their own structure by 
rewriting some rules of their subnet components.  

 

The integration within the same graphical user interface of 
the facilities for the model construction and structural 
analysis algorithms for model validation, and of the control 
panels for performing the visual and interactive  simulation, 
emphasizes the importance of including in a simulation 
experiment both validation and evaluation aspects of timed 
GRPN and/or TMPN models.  

 

The animation of the TMPN models, performed only 
when desired by the user, appears to be a powerful tool that 
complements the structural results for the debugging and 
tuning of the models used for the performance analysis.  

 

As further work, we will develop and integrate hybrid 

       Figure 5. Formula Editor of VMPN. 
 

     Figure 6. Simulation form of VMPN. 
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TMPN models in VMPN tool and it will be possible to 
editing, visual simulation, behavioral and performance 
analysis.  
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