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Abstract—The primary purpose of this paper is to study 

the field of Hardware Description Languages such as VHDL. 
The study is significant for several reasons. First, the 
utilization of Hardware Description Languages in real life 
engineering applications will become more conventional. 
Second, the study is significant due to the major implication 
that programmable logic based microcontrollers can be 
upgraded as the requirements of a system increase as shown 
in the case of the counter. Third, it is demonstrated how the 
utilization of VHDL benefits not only engineering 
applications, but also plays an important role accelerating 
the design of digital systems. VHDL were employed to 
describe the models for a different sized counter. The 
internal view of the device specified the functionality of the 
counter using the concept of architecture, while the external 
view specified the interface of the device through which it 
communicated with the other models in its environment. 

 
Index Terms—VHDL, Very high speed integrated circuit, 

Very-large-scale integration, counter, entity, architecture. 

I. INTRODUCTION 
The growing sophistication of applications continually 

pushes the design and manufacturing of integrated circuits 
to new levels of complexity. Due to major advances in the 
development of electronics and miniaturization, vendors 
are capable of building and designing products with 
increasingly greater functionality, higher performance, 
lower cost, lower power consumption, and smaller 
dimensions [2].  

The electronics industry requires systems to be capable 
of in-site reprogramming, where the upgrading task 
depends more on software than on hardware. This 
situation has fostered the need for adoption of modern 
technologies in design and testing. There are now two 
industry standard hardware description languages, VHDL 
and Verilog. The complexity of ASIC and FPGA designs 
has meant an increase in the number of specialist design 
consultants with specific tools and with their own libraries 
of macro and mega cells written in either VHDL or 
Verilog [5]. 

Of the several existing methodologies, high-density 
Programmable Logic Devices (PLDs) as well as the Very 
High Speed Integrated Circuits (VHSIC) Hardware 
Description Language (VHDL) and Verilog Hardware 
Description Language are key elements in the evolution of 
electronic devices. It was demonstrated how the utilization 
of VHDL generates benefits not only for engineering 
applications, but also playing an important role 
accelerating the design of digital systems [2]. 

VHDL usage has risen rapidly since its inception and is 
used by literally tens of thousands of engineers around the 
globe to create sophisticated electronic products. VHDL is 

a powerful language with numerous language constructs 
that are capable of describing very complex behavior. 
Learning all the features of VHDL are not at all a simple 
task and the designer abilities and experiences still remain 
an important issue [1]. 

The article is illustrating the implementation and 
simulation of a VHDL logic design based on behavioral 
functional description. A reusable HDL code for a 
presetable up/down 4-bit counter is generated and 
described in order to demonstrate the principle. 
Simulation is used to validate the procedure.  

II. SHORT OVERVIEW ON VHDL LANGUAGE 
The VHSIC Hardware Description Language is an 

industry standard language used to describe hardware 
from the abstract to the concrete level. The concept of a 
Hardware Description Language was born from the 
necessity of bringing the worlds of hardware and software 
back together again. Vendors wanted the design 
descriptions to be computer readable and executable. This 
was followed by the arrival of Very High Speed Integrated 
Circuits (VHSIC) Hardware Description Language 
(VHDL) [2]. Its roots are in the ADA language, as will be 
seen by the overall structure of VHDL as well as other 
VHDL statements. 

VHDL is a hardware description language employed to 
model a digital system or digital hardware device at many 
levels of abstraction, ranging from the algorithmic level 
down to the gate level. The complexity of the digital 
system being modeled could vary from that of a simple 
gate to a complete digital electronic system, or anything in 
between. The digital system can also be described 
hierarchically [2].  

The VHDL language can also be described as a 
combination of languages as: sequential language, 
concurrent language, netlist language, waveform 
generation language and timing specifications. 

Therefore, VHDL has constructs that enable the user to 
express the concurrent or sequential behavior of a digital 
system with or without timing characteristics. It also 
allows the modeling of systems as an interconnection of 
components. Test waveforms can also be generated using 
the same constructs. All the above constructs may also be 
combined to provide a comprehensive description of the 
system in a single model [3].  

III. TRANSLATION OF A CIRCUIT  INTO A VHDL CODE 
VHDL describes the behavior of an electronic circuit or 

system, from which the physical circuit or system can then 
be implemented [4]. 
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The basic building blocks of VHDL design are the 
entity declaration and the architecture body. A VHDL 
entity specifies the name of the entity, the ports of the 
entity, and entity-related information.  

The next example is a design of a 4-bit loadable 
up/down counter. A graphical schematic for a 4-bit 
counter is depicted in Figure 1. 
 

 
The entity describes a component’s connections to the 

rest of the design. It specifies the number of ports, the 
direction of the ports, and the type of the ports. 

The entity counter contains a clock input port to clock 
the counter, a load input port that allows the counter to be 
synchronously loaded, a clear input port that 
synchronously clears the counter, a up-down input port 
that sets the counter to a up count or a down count, a 
data_in input port that allows values to be loaded into the 
counter’s cells, a output port terminal_count that detects 
the end of the counter and a output port data_out that 
presents the current value of the counter to the outside 
world. 

 
ENTITY counter_4bit IS 
    PORT( 

data_in: IN std_logic_vector(3 
downto 0); 
clock: IN std_logic; 
load: IN std_logic; 
clear: IN std_logic; 
up_down: IN std_logic; 
terminal_count: OUT   std_logic; 
data_out: OUT std_logic_vector (3 
downto 0)); 

END counter_4bit; 
 
VHDL allows the user to write the designs using 

various styles of architecture. The architecture can contain 
any combination of behavioral, structural or dataflow 
styles to define an entity’s function. These styles allow 
programmers to describe a design at different levels of 
abstraction, from using algorithms to gate level primitives 
[2]. 

The architecture describes the underlying functionality 
of the entity and contains the statements that model the 
behavior of the entity. The architecture is always related 
to an entity and describes the behavior of that entity.  

The architecture for the 4-bit loadable up/down counter 

device described earlier would look like this: 
 
ARCHITECTURE counter_4bit_arh OF 
counter_4bit IS 
SIGNAL  
count:std_logic_vector(3 downto 0)  

:="0000"; 
BEGIN 
PROCESS (clock) BEGIN 
    IF (clear = '0') THEN         
count <= "0000"; 
    ELSIF(load = '0') THEN      
       count <= data_in; 
    ELSE  
    IF (clock'EVENT AND clock = '0') 
AND(clock'LAST_VALUE = '1') THEN  
    IF(up_down = '1') THEN  
       count <= count + 1;   
    END IF; 
    IF(up_down = '0') THEN 
       count <= count - 1;   
    END IF; 
END IF; 
END IF; 
    IF (count = "1111") THEN  
       terminal_count <= '1'; 
    ELSE  
  terminal_count <= '0'; 
    END IF; 
data_out <= count;       
END PROCESS; 
END counter_4bit_arh; 

 
The reason for the connection between the architecture 

and the entity is that an entity can have multiple 
architectures describing the behavior of the entity.  

If the designer wants to use a different architecture that 
has another description he can use or reuse the VHDL 
configurations. Configurations are a primary design unit 
used to bind component instances to entities. For 
structural models, configurations can be thought of as the 
parts list for the model. For component instances, the 
configuration specifies for an entity which architecture to 
be used for a specific instance. 

The configuration can also be used to provide a very 
fast substitution capability. Multiple architectures can 
exist for a single entity. One architecture might be a 
behavioral model for the entity, while another architecture 
might be a structural model for the entity. The architecture 
used in the description can be selected by specifying 
which architecture to be included into the configuration, 
by just recompiling it. After compilation, the simulated 
model uses the specified architecture. 

The default configuration specifies the configuration 
name, the entity being configured and the architecture to 
be used for the entity. 

The two architectures of the entity counter specify two 
different-sized counters that can be used for the entity. 
The first architecture specifies an 8-bit up/down counter. 
The second architecture specifies a 16-bit up/down 
counter. The architectures specify a synchronous counter 
with synchronous load and clear inputs. All operations for 
the device occur with respect to the clock. 
ENTITY counter IS 

data_in 

up_down 

load 

clock 
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data_out 

Figure 1. A 4-bit loadable up/down counter. 

terminal_cout 
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    PORT( 
data_in : IN INTEGER; 
clock : IN std_logic; 
clear : IN std_logic; 
load : IN std_logic; 
up_down : IN std_logic;  
terminal_count: OUT std_logic; 
data_out : OUT INTEGER); 

END counter; 
 
ARCHITECTURE counter_8bit_arh OF 
counter IS 
BEGIN 
PROCESS(clock) 
    VARIABLE count : INTEGER := 0; 
    BEGIN 
    IF (clear = '0') THEN 
       count := 0; 
    ELSIF (load = '0') THEN 
       count := data_in; 
    ELSE 
    IF (clock'EVENT AND clock = '1') 
AND(clock'LAST_VALUE = '0') THEN 
    IF (up_down = '1') THEN 
    IF (count = 255)THEN 
       count:=0; 
    ELSE 
       count := count + 1; 
    END IF;   END IF; 
    IF(up_down = '0')THEN 
    IF (count = 0)THEN 
       count:=255; 
    ELSE 
       count := count - 1; 
    END IF;   END IF; 
    END IF;   END IF; 
    IF (count = 255) THEN    
terminal_count <= '1'; 
    ELSE  
       terminal_count <= '0'; 
    END IF; 
data_out <= count; 
END PROCESS; 
END counter_8bit_arh; 
ARCHITECTURE counter_64k_arh OF 
counter IS 
BEGIN 
PROCESS(clock) 
VARIABLE count : INTEGER := 0; 
BEGIN 
    IF (clear = '0') THEN 
       count := 0; 
    ELSIF (load = '0') THEN 
       count := data_in; 
    ELSE 
    IF (clock'EVENT AND clock = '1') 
AND(clock'LAST_VALUE = '0') THEN 
    IF (up_down = '1') THEN 
    IF (count = 65535)THEN 
       count:=0; 
    ELSE 
       count := count + 1; 
    END IF;   END IF; 
    IF(up_down = '0')THEN 
    IF (count = 0)THEN 
       count:=65535; 
    ELSE 
       count := count - 1; 
    END IF;   END IF; 
    END IF;   END IF; 
    IF (count = 65535) THEN   
       terminal_count <= '1'; 
    ELSE  
       terminal_count <= '0'; 
    END IF; 

data_out <= count; 
END PROCESS; 
END counter_64k_arh; 
 

Each of the two configurations above specifies a 
different architecture for the entity counter. Below is an 
example of two configurations illustrated as 
small_counter and  big_counter: 
 
CONFIGURATION small_counter OF counter IS 

FOR counter_8bit_arh 
END FOR; 

END small_counter; 
CONFIGURATION big_counter OF counter IS 

FOR counter_64k_arh 
END FOR; 

END big_counter; 
 
This example shows how two different architectures for 

the same counter entity can be configured using two 
default configurations. The entity for the counter does not 
specify any bit word width for the data to be loaded into 
the counter or output data generated by the counter. The 
data type for the input and output data is an integer. With 
a data type of integer, multiple types of counters can be 
supported up to the integer representation limit of the 
computer hosting the VHDL simulator. 

The next description example contains a package that 
defines an 8-bit binary word range that causes the 
synthesis tools to generate an 8-bit counter. Changing the 
size of the range causes the synthesis tools to generate 
different-sized counters. 
 
PACKAGE count_types IS 
SUBTYPE bit8 is INTEGER RANGE 0 to 255; 
END count_types; 
 
ENTITY counter IS 
    PORT( 

data_in: IN bit8; 
clock: IN std_logic; 
load: IN std_logic; 
clear: IN std_logic; 
up_down: IN std_logic; 
terminal_count: OUT   std_logic; 
data_out: OUT bit8); 

END counter; 
 

A. The test-bench 
A simulator needs two inputs: the description of the 

design as basics and stimulus to drive the simulation. 
Sometimes designs are self-stimulating and do not need 
any external stimulus, but in most cases, VHDL designers 
use a VHDL test-bench of one kind or another to drive the 
design being tested. The top-level design description 
instantiates two components: the first being the design 
under test (DUT) and the second the stimulus driver. 
These components are connected with signals that 
represent the external environment of the DUT. The top 
level of the design does not contain any external ports, just 
internal signals that connect the two instantiated 
components. When the designer makes a small change to 
fix an error, the change can be tested to make sure that it 
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did not affect other parts of the design [1].  
The test-bench encapsulates the stimulus driver, known 

good results and DUT and includes internal signals to 
make the proper connections. The stimulus values drives 
inputs into the DUT. The DUT responds to the input 
signals and produces output results. Finally, a compare 
function within the test-bench compares the results from 
the DUT against those known good results and reports any 
discrepancies. That is the basic function of a test-bench, 
but there are a number of methods of writing a test-bench 
and each method has advantages and disadvantages [1]. 

The following are the most common test-bench types: 
• Stimulus only — contains only the stimulus 

driver and DUT; does not contain any results 
verification. 

• Full test-bench — Contains stimulus driver, 
known good results, and results comparison. 

• Simulator specific — Test-bench is written in a 
simulator-specific format. 

• Hybrid test-bench — Combines techniques from 
more than one test-bench style. 

• Fast test-bench — Test-bench written to get 
ultimate speed from simulation. 

 
The advantages and disadvantages of each kind of test-

bench type are shown in Table 1. 
 

TABLE 1. 
 Speed Flexibility Portability 

Stimulus only Slow High High 
Full testbench Slow High High 
Simulator 
specific 

Medium High Low 

Hybrid 
testbench 

Medium Medium High 

Fast testbench Extremely 
fast 

Low High 

 
 
 

B. VHDL Simulation 
The VHDL description of the counter is simulated with 

a standard VHDL simulator to verify that the description 
is correct. 

We decide to use a fast test-bench that is optimized for 
speed and typically does not limit the speed of the 
simulation. The fast test-bench looks similar to the other 
test-bench styles consisting in a top-level entity that 
instantiates a DUT and a process that generates the 
stimulus. What’s different is the fact that instead of 
reading the stimulus vectors from a file, the vectors are 
compiled into the test-bench model. 

The advantages of the fast test-bench are related with 
the fact that it is executed extremely fast and doesn’t 
suffer due to the operating system (file overheads are 
included when reading a file). A disadvantage is that the 
compiled model can get very large if the number of 
vectors is large, making compiling time longer and 
simulator memory usage excessive. Another disadvantage 
of the fast test-bench is that the model is not easily 
exchanged between simulations to be run. Changing the 
test-bench requires a recompilation step. Therefore, the 
fast test-bench is most useful for models that need fast 
vector inputs to be applied so that the vectors can be run 
in a small or medium-sized loop where those vectors are 
applied again and again. 

 

C. Results of Simulation 
The result for the entity counter_4bit is shown in Figure 

2. For demonstration purposes the input clock always 
shifts values every 5 ns. The load signal is ‘0’ between 0 
time to 10 ns and allows the counter to be loaded with 
data_in value and to count up. The clear signal remains at 
‘1’ except at the interval from 40 ns to 45 ns. This means 
that the output data_out will restart counting down from 
‘15’ at 55 ns time. 

 
Figure 2. Simulation results for the entity counter_4bit. 
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Figures 3 and 4 shows the simulation results obtained 
for the configurations small_counter and big_counter for 
the entity counter. 

 
 

 

 
Figure 3. Simulation results for the configuration small_counter. 

 

 
Figure 4. Simulation results for the configuration big_counter. 

 
 

IV. CONCLUSION 
A fundamental motivation to use VHDL is that VHDL 

is a standard, technology/vendor independent language, 
and is therefore portable and reusable. The two main 
immediate applications of VHDL are in the field of 
Programmable Logic Devices (including CPLDs – 
Complex Programmable Logic Devices and FPGAs – 
Field Programmable Gate Arrays) and in the field of 
ASICs (Application Specific Integrated Circuits). Once 
the VHDL code has been written, it can be used either to 
implement the circuit in a programmable device (from 
Altera, Xilinx, Atmel, etc.) or can be submitted to a 
foundry for fabrication of an ASIC chip. Currently, many 
complex commercial chips are designed using such an 
approach. 
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