
9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 160

Abstract—The primary purpose of this paper is to study

the field of Hardware Description Languages such as VHDL.
The study is significant for several reasons. First, the
utilization of Hardware Description Languages in real life
engineering applications will become more conventional.
Second, the study is significant due to the major implication
that programmable logic based microcontrollers can be
upgraded as the requirements of a system increase as shown
in the case of the counter. Third, it is demonstrated how the
utilization of VHDL benefits not only engineering
applications, but also plays an important role accelerating
the design of digital systems. VHDL were employed to
describe the models for a different sized counter. The
internal view of the device specified the functionality of the
counter using the concept of architecture, while the external
view specified the interface of the device through which it
communicated with the other models in its environment.

Index Terms—VHDL, Very high speed integrated circuit,

Very-large-scale integration, counter, entity, architecture.

I. INTRODUCTION
The growing sophistication of applications continually

pushes the design and manufacturing of integrated circuits
to new levels of complexity. Due to major advances in the
development of electronics and miniaturization, vendors
are capable of building and designing products with
increasingly greater functionality, higher performance,
lower cost, lower power consumption, and smaller
dimensions [2].

The electronics industry requires systems to be capable
of in-site reprogramming, where the upgrading task
depends more on software than on hardware. This
situation has fostered the need for adoption of modern
technologies in design and testing. There are now two
industry standard hardware description languages, VHDL
and Verilog. The complexity of ASIC and FPGA designs
has meant an increase in the number of specialist design
consultants with specific tools and with their own libraries
of macro and mega cells written in either VHDL or
Verilog [5].

Of the several existing methodologies, high-density
Programmable Logic Devices (PLDs) as well as the Very
High Speed Integrated Circuits (VHSIC) Hardware
Description Language (VHDL) and Verilog Hardware
Description Language are key elements in the evolution of
electronic devices. It was demonstrated how the utilization
of VHDL generates benefits not only for engineering
applications, but also playing an important role
accelerating the design of digital systems [2].

VHDL usage has risen rapidly since its inception and is
used by literally tens of thousands of engineers around the
globe to create sophisticated electronic products. VHDL is

a powerful language with numerous language constructs
that are capable of describing very complex behavior.
Learning all the features of VHDL are not at all a simple
task and the designer abilities and experiences still remain
an important issue [1].

The article is illustrating the implementation and
simulation of a VHDL logic design based on behavioral
functional description. A reusable HDL code for a
presetable up/down 4-bit counter is generated and
described in order to demonstrate the principle.
Simulation is used to validate the procedure.

II. SHORT OVERVIEW ON VHDL LANGUAGE
The VHSIC Hardware Description Language is an

industry standard language used to describe hardware
from the abstract to the concrete level. The concept of a
Hardware Description Language was born from the
necessity of bringing the worlds of hardware and software
back together again. Vendors wanted the design
descriptions to be computer readable and executable. This
was followed by the arrival of Very High Speed Integrated
Circuits (VHSIC) Hardware Description Language
(VHDL) [2]. Its roots are in the ADA language, as will be
seen by the overall structure of VHDL as well as other
VHDL statements.

VHDL is a hardware description language employed to
model a digital system or digital hardware device at many
levels of abstraction, ranging from the algorithmic level
down to the gate level. The complexity of the digital
system being modeled could vary from that of a simple
gate to a complete digital electronic system, or anything in
between. The digital system can also be described
hierarchically [2].

The VHDL language can also be described as a
combination of languages as: sequential language,
concurrent language, netlist language, waveform
generation language and timing specifications.

Therefore, VHDL has constructs that enable the user to
express the concurrent or sequential behavior of a digital
system with or without timing characteristics. It also
allows the modeling of systems as an interconnection of
components. Test waveforms can also be generated using
the same constructs. All the above constructs may also be
combined to provide a comprehensive description of the
system in a single model [3].

III. TRANSLATION OF A CIRCUIT INTO A VHDL CODE
VHDL describes the behavior of an electronic circuit or

system, from which the physical circuit or system can then
be implemented [4].

The Optimization of a Design Using
VHDL Concepts

Iuliana CHIUCHISAN1, Alin Dan POTORAC2
"Stefan cel Mare" University of Suceava

str.Universitatii nr.13, RO-720229 Suceava
1iuliap@eed.usv.ro, 2 alinp@eed.usv.ro

mailto:iuliap@eed.usv.ro
mailto:alinp@eed.usv.ro

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 161

The basic building blocks of VHDL design are the
entity declaration and the architecture body. A VHDL
entity specifies the name of the entity, the ports of the
entity, and entity-related information.

The next example is a design of a 4-bit loadable
up/down counter. A graphical schematic for a 4-bit
counter is depicted in Figure 1.

The entity describes a component’s connections to the

rest of the design. It specifies the number of ports, the
direction of the ports, and the type of the ports.

The entity counter contains a clock input port to clock
the counter, a load input port that allows the counter to be
synchronously loaded, a clear input port that
synchronously clears the counter, a up-down input port
that sets the counter to a up count or a down count, a
data_in input port that allows values to be loaded into the
counter’s cells, a output port terminal_count that detects
the end of the counter and a output port data_out that
presents the current value of the counter to the outside
world.

ENTITY counter_4bit IS
 PORT(

data_in: IN std_logic_vector(3
downto 0);
clock: IN std_logic;
load: IN std_logic;
clear: IN std_logic;
up_down: IN std_logic;
terminal_count: OUT std_logic;
data_out: OUT std_logic_vector (3
downto 0));

END counter_4bit;

VHDL allows the user to write the designs using

various styles of architecture. The architecture can contain
any combination of behavioral, structural or dataflow
styles to define an entity’s function. These styles allow
programmers to describe a design at different levels of
abstraction, from using algorithms to gate level primitives
[2].

The architecture describes the underlying functionality
of the entity and contains the statements that model the
behavior of the entity. The architecture is always related
to an entity and describes the behavior of that entity.

The architecture for the 4-bit loadable up/down counter

device described earlier would look like this:

ARCHITECTURE counter_4bit_arh OF
counter_4bit IS
SIGNAL
count:std_logic_vector(3 downto 0)

:="0000";
BEGIN
PROCESS (clock) BEGIN
 IF (clear = '0') THEN
count <= "0000";
 ELSIF(load = '0') THEN
 count <= data_in;
 ELSE
 IF (clock'EVENT AND clock = '0')
AND(clock'LAST_VALUE = '1') THEN
 IF(up_down = '1') THEN
 count <= count + 1;
 END IF;
 IF(up_down = '0') THEN
 count <= count - 1;
 END IF;
END IF;
END IF;
 IF (count = "1111") THEN
 terminal_count <= '1';
 ELSE
 terminal_count <= '0';
 END IF;
data_out <= count;
END PROCESS;
END counter_4bit_arh;

The reason for the connection between the architecture

and the entity is that an entity can have multiple
architectures describing the behavior of the entity.

If the designer wants to use a different architecture that
has another description he can use or reuse the VHDL
configurations. Configurations are a primary design unit
used to bind component instances to entities. For
structural models, configurations can be thought of as the
parts list for the model. For component instances, the
configuration specifies for an entity which architecture to
be used for a specific instance.

The configuration can also be used to provide a very
fast substitution capability. Multiple architectures can
exist for a single entity. One architecture might be a
behavioral model for the entity, while another architecture
might be a structural model for the entity. The architecture
used in the description can be selected by specifying
which architecture to be included into the configuration,
by just recompiling it. After compilation, the simulated
model uses the specified architecture.

The default configuration specifies the configuration
name, the entity being configured and the architecture to
be used for the entity.

The two architectures of the entity counter specify two
different-sized counters that can be used for the entity.
The first architecture specifies an 8-bit up/down counter.
The second architecture specifies a 16-bit up/down
counter. The architectures specify a synchronous counter
with synchronous load and clear inputs. All operations for
the device occur with respect to the clock.
ENTITY counter IS

data_in

up_down

load

clock

clear

data_out

Figure 1. A 4-bit loadable up/down counter.

terminal_cout

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 162

 PORT(
data_in : IN INTEGER;
clock : IN std_logic;
clear : IN std_logic;
load : IN std_logic;
up_down : IN std_logic;
terminal_count: OUT std_logic;
data_out : OUT INTEGER);

END counter;

ARCHITECTURE counter_8bit_arh OF
counter IS
BEGIN
PROCESS(clock)
 VARIABLE count : INTEGER := 0;
 BEGIN
 IF (clear = '0') THEN
 count := 0;
 ELSIF (load = '0') THEN
 count := data_in;
 ELSE
 IF (clock'EVENT AND clock = '1')
AND(clock'LAST_VALUE = '0') THEN
 IF (up_down = '1') THEN
 IF (count = 255)THEN
 count:=0;
 ELSE
 count := count + 1;
 END IF; END IF;
 IF(up_down = '0')THEN
 IF (count = 0)THEN
 count:=255;
 ELSE
 count := count - 1;
 END IF; END IF;
 END IF; END IF;
 IF (count = 255) THEN
terminal_count <= '1';
 ELSE
 terminal_count <= '0';
 END IF;
data_out <= count;
END PROCESS;
END counter_8bit_arh;
ARCHITECTURE counter_64k_arh OF
counter IS
BEGIN
PROCESS(clock)
VARIABLE count : INTEGER := 0;
BEGIN
 IF (clear = '0') THEN
 count := 0;
 ELSIF (load = '0') THEN
 count := data_in;
 ELSE
 IF (clock'EVENT AND clock = '1')
AND(clock'LAST_VALUE = '0') THEN
 IF (up_down = '1') THEN
 IF (count = 65535)THEN
 count:=0;
 ELSE
 count := count + 1;
 END IF; END IF;
 IF(up_down = '0')THEN
 IF (count = 0)THEN
 count:=65535;
 ELSE
 count := count - 1;
 END IF; END IF;
 END IF; END IF;
 IF (count = 65535) THEN
 terminal_count <= '1';
 ELSE
 terminal_count <= '0';
 END IF;

data_out <= count;
END PROCESS;
END counter_64k_arh;

Each of the two configurations above specifies a
different architecture for the entity counter. Below is an
example of two configurations illustrated as
small_counter and big_counter:

CONFIGURATION small_counter OF counter IS

FOR counter_8bit_arh
END FOR;

END small_counter;
CONFIGURATION big_counter OF counter IS

FOR counter_64k_arh
END FOR;

END big_counter;

This example shows how two different architectures for

the same counter entity can be configured using two
default configurations. The entity for the counter does not
specify any bit word width for the data to be loaded into
the counter or output data generated by the counter. The
data type for the input and output data is an integer. With
a data type of integer, multiple types of counters can be
supported up to the integer representation limit of the
computer hosting the VHDL simulator.

The next description example contains a package that
defines an 8-bit binary word range that causes the
synthesis tools to generate an 8-bit counter. Changing the
size of the range causes the synthesis tools to generate
different-sized counters.

PACKAGE count_types IS
SUBTYPE bit8 is INTEGER RANGE 0 to 255;
END count_types;

ENTITY counter IS
 PORT(

data_in: IN bit8;
clock: IN std_logic;
load: IN std_logic;
clear: IN std_logic;
up_down: IN std_logic;
terminal_count: OUT std_logic;
data_out: OUT bit8);

END counter;

A. The test-bench
A simulator needs two inputs: the description of the

design as basics and stimulus to drive the simulation.
Sometimes designs are self-stimulating and do not need
any external stimulus, but in most cases, VHDL designers
use a VHDL test-bench of one kind or another to drive the
design being tested. The top-level design description
instantiates two components: the first being the design
under test (DUT) and the second the stimulus driver.
These components are connected with signals that
represent the external environment of the DUT. The top
level of the design does not contain any external ports, just
internal signals that connect the two instantiated
components. When the designer makes a small change to
fix an error, the change can be tested to make sure that it

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 163

did not affect other parts of the design [1].
The test-bench encapsulates the stimulus driver, known

good results and DUT and includes internal signals to
make the proper connections. The stimulus values drives
inputs into the DUT. The DUT responds to the input
signals and produces output results. Finally, a compare
function within the test-bench compares the results from
the DUT against those known good results and reports any
discrepancies. That is the basic function of a test-bench,
but there are a number of methods of writing a test-bench
and each method has advantages and disadvantages [1].

The following are the most common test-bench types:
• Stimulus only — contains only the stimulus

driver and DUT; does not contain any results
verification.

• Full test-bench — Contains stimulus driver,
known good results, and results comparison.

• Simulator specific — Test-bench is written in a
simulator-specific format.

• Hybrid test-bench — Combines techniques from
more than one test-bench style.

• Fast test-bench — Test-bench written to get
ultimate speed from simulation.

The advantages and disadvantages of each kind of test-

bench type are shown in Table 1.

TABLE 1.
 Speed Flexibility Portability

Stimulus only Slow High High
Full testbench Slow High High
Simulator
specific

Medium High Low

Hybrid
testbench

Medium Medium High

Fast testbench Extremely
fast

Low High

B. VHDL Simulation
The VHDL description of the counter is simulated with

a standard VHDL simulator to verify that the description
is correct.

We decide to use a fast test-bench that is optimized for
speed and typically does not limit the speed of the
simulation. The fast test-bench looks similar to the other
test-bench styles consisting in a top-level entity that
instantiates a DUT and a process that generates the
stimulus. What’s different is the fact that instead of
reading the stimulus vectors from a file, the vectors are
compiled into the test-bench model.

The advantages of the fast test-bench are related with
the fact that it is executed extremely fast and doesn’t
suffer due to the operating system (file overheads are
included when reading a file). A disadvantage is that the
compiled model can get very large if the number of
vectors is large, making compiling time longer and
simulator memory usage excessive. Another disadvantage
of the fast test-bench is that the model is not easily
exchanged between simulations to be run. Changing the
test-bench requires a recompilation step. Therefore, the
fast test-bench is most useful for models that need fast
vector inputs to be applied so that the vectors can be run
in a small or medium-sized loop where those vectors are
applied again and again.

C. Results of Simulation
The result for the entity counter_4bit is shown in Figure

2. For demonstration purposes the input clock always
shifts values every 5 ns. The load signal is ‘0’ between 0
time to 10 ns and allows the counter to be loaded with
data_in value and to count up. The clear signal remains at
‘1’ except at the interval from 40 ns to 45 ns. This means
that the output data_out will restart counting down from
‘15’ at 55 ns time.

Figure 2. Simulation results for the entity counter_4bit.

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 164

Figures 3 and 4 shows the simulation results obtained
for the configurations small_counter and big_counter for
the entity counter.

Figure 3. Simulation results for the configuration small_counter.

Figure 4. Simulation results for the configuration big_counter.

IV. CONCLUSION
A fundamental motivation to use VHDL is that VHDL

is a standard, technology/vendor independent language,
and is therefore portable and reusable. The two main
immediate applications of VHDL are in the field of
Programmable Logic Devices (including CPLDs –
Complex Programmable Logic Devices and FPGAs –
Field Programmable Gate Arrays) and in the field of
ASICs (Application Specific Integrated Circuits). Once
the VHDL code has been written, it can be used either to
implement the circuit in a programmable device (from
Altera, Xilinx, Atmel, etc.) or can be submitted to a
foundry for fabrication of an ASIC chip. Currently, many
complex commercial chips are designed using such an
approach.

REFERENCES

[1] Perry, D. L. - “VHDL Programming by Example”, 4th edition, Mc-

Grow Hill, USA, 2002.
[2] Wunnava, S. - “Tutorial on VHDL and Verilog applications”,

LACCEI, 2004.
[3] Skahill, K. - “VHDL for Programmable Logic”, 1st edition,

Addison-Wesley, 1996.
[4] Volnei, A. Pedroni - “Circuit Design with VHDL”, MIT Press,

2004.
[5] Patentariu, I., Potorac, A. D. - „Hardware Description Languages,

A Comparative Approach”, Advances in Electrical and Computer
Engineering, Faculty of Electrical Engineering, Ştefan cel Mare
University of Suceava, pp 303-308, 2003.

[6] George MAHALU, Adrian GRAUR. Bus Communication in
Robotic Leading System, Advances in Electrical and Computer
Engineering, Suceava, Romania, , No 1/2005, volume 5 (12), pp.
17-24.

