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Abstract—In this paper we present GenFSM - a tool that was 
designed by the authors to generate a number of completely or 
incompletely specified finite state machines. GenFSM will 
receive at the input a list of arguments regarding the required 
number of internal states, the number of inputs and outputs, 
and also the desired output format. GenFSM will generate a 
specified number of state machines that are described as state 
transition tables for academic use, or in Verilog format as a 
standard hardware description language in the CAD industry, 
in order to be used for portability and integration with another 
tools  for design or testing. 
 

Index Terms—finite state machine, state transition table, 
logic synthesis, system-level design, Verilog 

I. INTRODUCTION 
Similarly to the Finite Automata model used in computer 

design, a finite state machine (FSM) model finds its widest 
use in hardware engineering. As a hardware development 
design pattern, FSM occurs in many hardware solutions, but 
unlike most of its pattern counterparts, FSM requires 
substantial time for manual implementation. The really 
critical part of the manual implementation is usually in its 
increasing cost of change and maintenance. All of the above 
considerations eventually converge to a necessity of an 
automatic fault-free FSM generation tool. 

In this paper, we describe our goal to develop a software 
tool, GenFSM, which would be able to: 

- Automatically produce completely or incompletely 
specified FSM implementation based on the 
configuration arguments on its input 

- The output format of the generated FSMs can be 
described as state-transition tables (Kiss level)[9], or 
in verilog (behavioral level) 

- Generate input data for any other development or 
testing tool, without posting any compatibility issues 

- Completely transparent to the user, but still, fault-free 
and producing completely described FSMs. 

GenFSM can be used for its primary purpose – to 
generate FSMs with arbitrary configuration, as well as, to 
help building powerful tools for hardware design, 
implementation, logic synthesis optimization, testing, 
verification, etc [3]. Some examples of such applications 
are: graphical automata modeling, model creation for 
model-based verification, model-based code synthesis, 
digital design, etc. 

In the next section we discuss about FSMs theoretical 
backgrounds and related work. We formulate a solution and 
propose an example in chapter III. Also, we discuss about 
the results and take some conclusions in chapter IV. 

II. PROBLEM FORMULATION 
A FSM can be classified as deterministic or non-

deterministic, and completely or incompletely specified. A 
completely specified state machine M (called CSFSM), can 
be described by a tuple M = (I, S, O, δ, λ), where I is a set of 
primary inputs, S is a set o state symbols, O is a set of 
primary outputs, δ: I x S → S is the next state function, and 
λ: I x S → O is the output function for Mealy machines or λ:  
S → O is the output function for Moore machines. Moore 
machines can be considered a special case of Mealy 
machines. Therefore the set of theories and methods used 
for Mealy machines will be also applicable to Moore 
machines. In the case of incompletely specified FSMs 
(called ICSFSM), I represents a finite set of inputs, S is a 
finite non-empty set of internal states, O is a finite set of 
outputs, δ : I x S → 2S is the next-state function, and λ : I x 
S → 2O is the output function.[5] A further distinction is 
between deterministic (DFSM) and non-deterministic 
(NDFSM) finite state machine. In deterministic FSM, for 
each state there is exactly one transition for each possible 
input. In non-deterministic automata, there can be none or 
more than one transition from a given state for a given 
possible input.[6] This distinction is relevant in practice, but 
not in theory, as there exists an algorithm which can 
transform any NDFSM into an equivalent DFSM, although 
this transformation typically significantly increases the 
complexity of the state machine. The FSM with only one 
state is called a combinatorial FSM and uses only input 
actions. This concept is useful in cases where a number of 
FSM are required to work together, and where it is 
convenient to consider a purely combinatorial part as a form 
of FSM to suit the design tools. A FSM can be described in 
a tabular form by a state transition table (STT), in a 
graphical form by a state transition graph (STG), or by using 
RTL code. GenFSM reads a number of arguments at the 
input and generates at the output FSMs described in Kiss or 
verilog code. The states of an FSM are listed as symbolic 
state names. Each symbolic state name has a corresponding 
binary value. Symbolic minimization performs the logic 
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minimization phase before the FSM state encoding.[4] 
Symbolic minimization was implemented by DeMicheli in 
KISS [2] in 1985. Some of the shortcomings of KISS are 
addressed in its successor NOVA [8]. NOVA takes more 
efficient and flexible approach to constraints satisfaction, 
representing it as a graph embedding problem and solving in 
several, heuristic strategies producing superior results and 
offering quality/runtime trade-offs [1]. 

 

III. PROBLEM SOLUTION 
 
GenFSM is using a standard FSM description template, 

where the next state and the output functions for each 
generated FSM are depending on the primary inputs and the 
present states of that FSM. (See Figure  1) [7] 

 

 
 
Figure 1. General sequential circuit. 

 
 
We take an example where, by using GenFSM, we 

generated 2 FSMs. For the completely-specified FSM, the 
STG description can be seen in Figure 2 and the STT 
description can be seen in table I. For the incompletely-
specified FSM, the STG description can be seen in Figure 3 
and the STT description can be seen in table II. 

 
 

 
 
 
Figure 2. STG for a completely specified FSM. 

 
 

 
 
 
Figure 3. STG for a incompletely specified FSM. 
 

As we can see in the graphical representation, in the case 
of ICSFSM, GenFSM is able to generate an incompletely 
specified value for the output function and also an undefined 
state for the next state function, which can be observed in 
the STG by a star. 

 
 

TABLE I. STT FOR A COMPLETELY-SPECIFIED FSM 
Input Pres State Next State Output 

0 St0 St1 0 1 
1 St0 St6 1 1 
0 St1 St7 1 0 
1 St1 St0 1 0 
0 St2 St6 1 1 
1 St2 St5 0 0 
0 St3 St3 1 1 
1 St3 St0 0 1 
0 St4 St7 1 0 
1 St4 St6 0 1 
0 St5 St1 0 0 
1 St5 St2 1 1 
0 St6 St7 1 0 
1 St6 St4 0 1 
0 St7 St2 1 1 
1 St7 St3 1 0 

 
 

TABLE II. STT FOR AN INCOMPLETELY-SPECIFIED FSM 
Input Pres State Next State Output 

0 St0 St2 0 0 
1 St0 St1 1 0 
0 St1 St0 - - 
1 St1 St6 0 1 
0 St2 * 0 - 
1 St2 St5 0 1 
0 St3 St3 1 - 
1 St3 St2 0 - 
0 St4 St6 1 - 
1 St4 St0 0 - 
0 St5 St4 - 0 
1 St5 St1 1 1 
0 St6 * 0 1 
1 St6 St5 - - 
0 St7 St2 1 - 
1 St7 St3 1 0 

 
 

For portability, GenFSM was designed to produce FSMs 
by respecting the Kiss or verilog language syntax. The STT 
representation was considered as the basic input to obtain 
the Kiss language. (Figure  4) 
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Figure 4. Design flow used to generate Kiss FSM description. 
 

The STG representation was used to describe the 
generated FSMs by using verilog code. (Figure 5) 
 

 
 

Figure 5. Design flow used to generate verilog FSM code. 
 

The results obtained by GenFSM for the ICSFSM 
example using the kiss-level description can be seen in Fig. 
6. Kiss is a tabular format, where each row has four entries: 
input field, present state field, next state field and output 
field. There are as many rows as transitions in the state 
graph of the FSM. 
 

.i 1 

.o 2 

.s 8 

.p 16 

.r st0 
0 st0     st2     00 
0 st1     st0     -- 
1 st1     st6     01 
0 st2     *       0- 
…….  
0 st6     *       01 
1 st6     st5     -- 
1 st7     st3     10 
.e 
 

Figure 6. Kiss file written by GenFSM . 
 

In the case that the output of the generated FSM is 
described by using verilog code, we might have 2 different 
approaches. GenFSM defines the internal states from the 
STG description as verilog parameters and is using a binary 
encoding of states. The main difference between the 
completely and the incompletely-specified FSM approaches 
is that in the case of incompletely-specified FSM, a new 
state is added to the states defined in the FSM description, 
which is called ‘statex’. This state is used to describe an 
undefined next-state of the generated FSM. The main 
sequential loop is given by the following verilog sequence: 

 
always @(posedge clock) 
 if (reset) 
  state = st0; 

 else 
  state = nextstate; 

 
The next state and the output functions are defined in a 

verilog ‘always’ sensitivity list that depends on the values of 
the current state and the inputs. A small fragment of the 
verilog code that describes the next-state function and the 
output function is shown below: 

 
always @(state or in) 
 begin 
  out = 2'b00; 
  nextstate = st0; 
  case (state) 
   st0: casex (in) 
         1'b0: begin 
                    nextstate = st5; 
                    out = 2'b1x; 
                 end 
         1'b1: begin 
                    nextstate = statex; 
                    out = 2'bxx; 
                 end 
        endcase 
 

As we can check in the verilog description, the second 
sequential loop is accomplished by using the ‘always’ 
keyword which detects when the values of the present state 
or the current input are changing. If the present state has 
been changed, then we check what the next state is and what 
output value of the FSM has been reached. As can be seen 
into the Appendix A full example, the GenFSM handles the 
case of “unspecified value” by using “casex” statement in 
the case of incompletely-specified FSMs. Each node has a 
single-output logic function associated with it and each 
feedback loop contains at least one latch (flip-flop). Each 
signal has only a single driver, and either the signal or the 
gate which drives the signal can be named without 
ambiguity. 

IV. RESULTS AND CONCLUSIONS 
GenFSM proved its functionality as a development tool 

during the PhD. research of the 1st author and has been used 
for its primary purpose – to generate FSMs from arbitrary 
configuration that have been used as primary input data for 
other FSM optimization tools designed by the authors. CAD 
designers require a fast and direct way to convert the 
original design into hardware description languages, such as 
HDL code, in order to simulate and implement it. One of the 
main advantages of using such a free “personal” tool was 
that it provided access to academic and independent 
research without the need of a commercial tool, while giving 
the advantage of generating the FSMs into a portable, 
standard format (kiss or verilog), that can be well used by 
any other hardware tools for digital design and testing. 
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APPENDIX A 
We show an example of an incompletely-specified FSM 

that was described as a STT, in Kiss level format, where .i 
represents the number of inputs, .o the number of outputs, .s 
the number of internal states, .p the number of products and 
.r the reset (original) state. 

 
# Kiss file written by GenFSM 
.i 1 
.o 2 
.s 8 
.p 16 
.r st0 
0 st0     st2     00 
1 st0     st1     10 
0 st1     st0     -- 
1 st1     st6     01 
0 st2     *       0- 
1 st2     st5     01 
0 st3     st3     1- 
1 st3     st2     0- 
0 st4     st6     1- 
1 st4     st0     0- 
0 st5     st4     -0 
1 st5     st1     11 
0 st6     *       01 
1 st6     st5     -- 
0 st7     st2     1- 
1 st7     st3     10 
.e 

 
Here we have an example of the verilog code for another 

incompletely-specified FSM generated by GenFSM. 
 

// Verilog file written by GenFSM 
module ex1_1_8_2_1205165646 (reset, clock, in, 
out); 
input reset, clock; 
input in; 
output [1:0] out; 
reg [1:0] out; 
reg [2:0] state, nextstate; 
parameter st0 = 0, 
          st1 = 1, 
          st2 = 2, 
          st3 = 3, 
          st4 = 4, 
          st5 = 5, 
          st6 = 6, 
          st7 = 7, 
          statex = 3'bxxx; 
always @(posedge clock) 
 if (reset) 

  state = st0; 
 else 
  state = nextstate; 
always @(state or in) 
 begin 
  out = 2'b00; 
  nextstate = st0; 
  case (state) 
   st0: casex (in) 
         1'b0: begin 
                  nextstate = st5; out = 2'b1x; 
                 end 
         1'b1: begin 
                  nextstate = statex; out = 2'bxx; 
                 end 
        endcase 
   st1: casex (in) 
         1'b0: begin 
                  nextstate = st0; out = 2'b00; 
                 end 
         1'b1: begin 
                  nextstate = st1; out = 2'b01; 
                 end 
        endcase 
   st2: casex (in) 
         1'b0: begin 
                  nextstate = st3; out = 2'b10; 
                 end 
         1'b1: begin 
                  nextstate = st2; out = 2'b0x; 
                 end 
        endcase 
   st3: casex (in) 
         1'b0: begin 
                  nextstate = st4; out = 2'b11; 
                 end 
         1'b1: begin 
                  nextstate = st2; out = 2'b0x; 
                 end 
        endcase 
   st4: casex (in) 
         1'b0: begin 
                  nextstate = statex; out = 2'bxx; 
                 end 
         1'b1: begin 
                  nextstate = st0; out = 2'b00; 
                 end 
        endcase 
   st5: casex (in) 
         1'b0: begin 
                  nextstate = st1; out = 2'b01; 
                 end 
         1'b1: begin 
                  nextstate = st6; out = 2'bx0; 
                 end 
        endcase 
   st6: casex (in) 
         1'b0: begin 
                  nextstate = statex; out = 2'bxx; 
                 end 
         1'b1: begin 
                  nextstate = st6; out = 2'bx0; 
                 end 
        endcase 
   st7: casex (in) 
         1'b0: begin 
                  nextstate = st1; out = 2'b01; 
                 end 
         1'b1: begin 
                  nextstate = st4; out = 2'b11; 
                 end 
        endcase 
  endcase 
 end 
endmodule 

 
 


