
9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 165

Abstract—In this paper we present GenFSM - a tool that was
designed by the authors to generate a number of completely or
incompletely specified finite state machines. GenFSM will
receive at the input a list of arguments regarding the required
number of internal states, the number of inputs and outputs,
and also the desired output format. GenFSM will generate a
specified number of state machines that are described as state
transition tables for academic use, or in Verilog format as a
standard hardware description language in the CAD industry,
in order to be used for portability and integration with another
tools for design or testing.

Index Terms—finite state machine, state transition table,
logic synthesis, system-level design, Verilog

I. INTRODUCTION
Similarly to the Finite Automata model used in computer

design, a finite state machine (FSM) model finds its widest
use in hardware engineering. As a hardware development
design pattern, FSM occurs in many hardware solutions, but
unlike most of its pattern counterparts, FSM requires
substantial time for manual implementation. The really
critical part of the manual implementation is usually in its
increasing cost of change and maintenance. All of the above
considerations eventually converge to a necessity of an
automatic fault-free FSM generation tool.

In this paper, we describe our goal to develop a software
tool, GenFSM, which would be able to:

- Automatically produce completely or incompletely
specified FSM implementation based on the
configuration arguments on its input

- The output format of the generated FSMs can be
described as state-transition tables (Kiss level)[9], or
in verilog (behavioral level)

- Generate input data for any other development or
testing tool, without posting any compatibility issues

- Completely transparent to the user, but still, fault-free
and producing completely described FSMs.

GenFSM can be used for its primary purpose – to
generate FSMs with arbitrary configuration, as well as, to
help building powerful tools for hardware design,
implementation, logic synthesis optimization, testing,
verification, etc [3]. Some examples of such applications
are: graphical automata modeling, model creation for
model-based verification, model-based code synthesis,
digital design, etc.

In the next section we discuss about FSMs theoretical
backgrounds and related work. We formulate a solution and
propose an example in chapter III. Also, we discuss about
the results and take some conclusions in chapter IV.

II. PROBLEM FORMULATION
A FSM can be classified as deterministic or non-

deterministic, and completely or incompletely specified. A
completely specified state machine M (called CSFSM), can
be described by a tuple M = (I, S, O, δ, λ), where I is a set of
primary inputs, S is a set o state symbols, O is a set of
primary outputs, δ: I x S → S is the next state function, and
λ: I x S → O is the output function for Mealy machines or λ:
S → O is the output function for Moore machines. Moore
machines can be considered a special case of Mealy
machines. Therefore the set of theories and methods used
for Mealy machines will be also applicable to Moore
machines. In the case of incompletely specified FSMs
(called ICSFSM), I represents a finite set of inputs, S is a
finite non-empty set of internal states, O is a finite set of
outputs, δ : I x S → 2S is the next-state function, and λ : I x
S → 2O is the output function.[5] A further distinction is
between deterministic (DFSM) and non-deterministic
(NDFSM) finite state machine. In deterministic FSM, for
each state there is exactly one transition for each possible
input. In non-deterministic automata, there can be none or
more than one transition from a given state for a given
possible input.[6] This distinction is relevant in practice, but
not in theory, as there exists an algorithm which can
transform any NDFSM into an equivalent DFSM, although
this transformation typically significantly increases the
complexity of the state machine. The FSM with only one
state is called a combinatorial FSM and uses only input
actions. This concept is useful in cases where a number of
FSM are required to work together, and where it is
convenient to consider a purely combinatorial part as a form
of FSM to suit the design tools. A FSM can be described in
a tabular form by a state transition table (STT), in a
graphical form by a state transition graph (STG), or by using
RTL code. GenFSM reads a number of arguments at the
input and generates at the output FSMs described in Kiss or
verilog code. The states of an FSM are listed as symbolic
state names. Each symbolic state name has a corresponding
binary value. Symbolic minimization performs the logic

GenFSM, a Finite State Machine
Generation Tool

Codrin PRUTEANU 1, Cristian-Gyözö HABA 2
1AsicAhead International S.R.L.,

Calea Rahovei, 266-268, Corp 61,
Sector 5, Bucharest

codrin.pruteanu@gmail.com
2Faculty of Electrical Engineering

"Gh. Asachi" Technical University, Iasi
Bd.D. Mangeron, nr.53, Iasi

cghaba@ee.tuiasi.ro

mailto:codrin.pruteanu@gmail.com
mailto:cghaba@ee.tuiasi.ro

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 166

minimization phase before the FSM state encoding.[4]
Symbolic minimization was implemented by DeMicheli in
KISS [2] in 1985. Some of the shortcomings of KISS are
addressed in its successor NOVA [8]. NOVA takes more
efficient and flexible approach to constraints satisfaction,
representing it as a graph embedding problem and solving in
several, heuristic strategies producing superior results and
offering quality/runtime trade-offs [1].

III. PROBLEM SOLUTION

GenFSM is using a standard FSM description template,

where the next state and the output functions for each
generated FSM are depending on the primary inputs and the
present states of that FSM. (See Figure 1) [7]

Figure 1. General sequential circuit.

We take an example where, by using GenFSM, we

generated 2 FSMs. For the completely-specified FSM, the
STG description can be seen in Figure 2 and the STT
description can be seen in table I. For the incompletely-
specified FSM, the STG description can be seen in Figure 3
and the STT description can be seen in table II.

Figure 2. STG for a completely specified FSM.

Figure 3. STG for a incompletely specified FSM.

As we can see in the graphical representation, in the case
of ICSFSM, GenFSM is able to generate an incompletely
specified value for the output function and also an undefined
state for the next state function, which can be observed in
the STG by a star.

TABLE I. STT FOR A COMPLETELY-SPECIFIED FSM
Input Pres State Next State Output

0 St0 St1 0 1
1 St0 St6 1 1
0 St1 St7 1 0
1 St1 St0 1 0
0 St2 St6 1 1
1 St2 St5 0 0
0 St3 St3 1 1
1 St3 St0 0 1
0 St4 St7 1 0
1 St4 St6 0 1
0 St5 St1 0 0
1 St5 St2 1 1
0 St6 St7 1 0
1 St6 St4 0 1
0 St7 St2 1 1
1 St7 St3 1 0

TABLE II. STT FOR AN INCOMPLETELY-SPECIFIED FSM
Input Pres State Next State Output

0 St0 St2 0 0
1 St0 St1 1 0
0 St1 St0 - -
1 St1 St6 0 1
0 St2 * 0 -
1 St2 St5 0 1
0 St3 St3 1 -
1 St3 St2 0 -
0 St4 St6 1 -
1 St4 St0 0 -
0 St5 St4 - 0
1 St5 St1 1 1
0 St6 * 0 1
1 St6 St5 - -
0 St7 St2 1 -
1 St7 St3 1 0

For portability, GenFSM was designed to produce FSMs
by respecting the Kiss or verilog language syntax. The STT
representation was considered as the basic input to obtain
the Kiss language. (Figure 4)

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 167

Figure 4. Design flow used to generate Kiss FSM description.

The STG representation was used to describe the
generated FSMs by using verilog code. (Figure 5)

Figure 5. Design flow used to generate verilog FSM code.

The results obtained by GenFSM for the ICSFSM
example using the kiss-level description can be seen in Fig.
6. Kiss is a tabular format, where each row has four entries:
input field, present state field, next state field and output
field. There are as many rows as transitions in the state
graph of the FSM.

.i 1

.o 2

.s 8

.p 16

.r st0
0 st0 st2 00
0 st1 st0 --
1 st1 st6 01
0 st2 * 0-
…….
0 st6 * 01
1 st6 st5 --
1 st7 st3 10
.e

Figure 6. Kiss file written by GenFSM .

In the case that the output of the generated FSM is
described by using verilog code, we might have 2 different
approaches. GenFSM defines the internal states from the
STG description as verilog parameters and is using a binary
encoding of states. The main difference between the
completely and the incompletely-specified FSM approaches
is that in the case of incompletely-specified FSM, a new
state is added to the states defined in the FSM description,
which is called ‘statex’. This state is used to describe an
undefined next-state of the generated FSM. The main
sequential loop is given by the following verilog sequence:

always @(posedge clock)
 if (reset)
 state = st0;

 else
 state = nextstate;

The next state and the output functions are defined in a

verilog ‘always’ sensitivity list that depends on the values of
the current state and the inputs. A small fragment of the
verilog code that describes the next-state function and the
output function is shown below:

always @(state or in)
 begin
 out = 2'b00;
 nextstate = st0;
 case (state)
 st0: casex (in)
 1'b0: begin
 nextstate = st5;
 out = 2'b1x;
 end
 1'b1: begin
 nextstate = statex;
 out = 2'bxx;
 end
 endcase

As we can check in the verilog description, the second
sequential loop is accomplished by using the ‘always’
keyword which detects when the values of the present state
or the current input are changing. If the present state has
been changed, then we check what the next state is and what
output value of the FSM has been reached. As can be seen
into the Appendix A full example, the GenFSM handles the
case of “unspecified value” by using “casex” statement in
the case of incompletely-specified FSMs. Each node has a
single-output logic function associated with it and each
feedback loop contains at least one latch (flip-flop). Each
signal has only a single driver, and either the signal or the
gate which drives the signal can be named without
ambiguity.

IV. RESULTS AND CONCLUSIONS
GenFSM proved its functionality as a development tool

during the PhD. research of the 1st author and has been used
for its primary purpose – to generate FSMs from arbitrary
configuration that have been used as primary input data for
other FSM optimization tools designed by the authors. CAD
designers require a fast and direct way to convert the
original design into hardware description languages, such as
HDL code, in order to simulate and implement it. One of the
main advantages of using such a free “personal” tool was
that it provided access to academic and independent
research without the need of a commercial tool, while giving
the advantage of generating the FSMs into a portable,
standard format (kiss or verilog), that can be well used by
any other hardware tools for digital design and testing.

REFERENCES
[1] Brayton K. R., Sangiovani-Vincentelli A., SIS: A system for

sequential circuit synthesis, Electronic Research Laboratory,
Memorandum No. UCB/ERL M92/41, University of California,
Berkeley, CA 94720, 4 May 1992.

[2] De Micheli G., Brayton R. K., and A. Sangiovanni-Vincentelli.
Optimal state assignment for Finite State Machines. IEEE Trans. on
CAD, pages 269-284, 1985.

[3] De Micheli G., Synthesis and Optimization of Digital Circuits,
Stanford University, McGraw-Hill, 1994.

Generate FSM

Produce STG

Generate Verilog
description for FSM

Generate FSM

Produce STT

Generate Kiss
description for FSM

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 168

[4] Devadas S., Newton A. R., Decomposition and factorization of
sequential finite state machines, IEEE Trans. on CAD, Vol. 8, No. 11,
November 1989, pp. 1206-1217.

[5] Hartmanis J. and Stearns R.E., Algebraic Structure Theory of
Sequential Machines, Prentice Hall, 1966

[6] Muntean I., Finite Automata Synthesis, Editura Tehnica, Bucharest,
Romania, 1997.

[7] Pruteanu C., Galea D., Haba C.G., Global Optimization in Complex
Circuits Design, Proceedings on 7th IEEE International Symposium
on Signals, Circuits, Systems (ISSCS 2005), vol.2, ISBN 0-7803-
9029-6, IEEE Catalog Number: 05EX1038, July 14-15, 2004, Iasi,
Romania;

[8] Villa T. and Sangiovanni-Vincentelli A. NOVA: state assignment of
Finite State Machines for optimal two-level logic implementation.
IEEE Trans. on CAD, pages 905-924, 1990

[9] Villa T., Gitanjali S., Shiple T., VIS User’s Manual, The VIS Group:
University of California, Berkeley, University of Colorado, Boulder,
Now at Lattice Semiconductor, 1996

APPENDIX A
We show an example of an incompletely-specified FSM

that was described as a STT, in Kiss level format, where .i
represents the number of inputs, .o the number of outputs, .s
the number of internal states, .p the number of products and
.r the reset (original) state.

Kiss file written by GenFSM
.i 1
.o 2
.s 8
.p 16
.r st0
0 st0 st2 00
1 st0 st1 10
0 st1 st0 --
1 st1 st6 01
0 st2 * 0-
1 st2 st5 01
0 st3 st3 1-
1 st3 st2 0-
0 st4 st6 1-
1 st4 st0 0-
0 st5 st4 -0
1 st5 st1 11
0 st6 * 01
1 st6 st5 --
0 st7 st2 1-
1 st7 st3 10
.e

Here we have an example of the verilog code for another

incompletely-specified FSM generated by GenFSM.

// Verilog file written by GenFSM
module ex1_1_8_2_1205165646 (reset, clock, in,
out);
input reset, clock;
input in;
output [1:0] out;
reg [1:0] out;
reg [2:0] state, nextstate;
parameter st0 = 0,
 st1 = 1,
 st2 = 2,
 st3 = 3,
 st4 = 4,
 st5 = 5,
 st6 = 6,
 st7 = 7,
 statex = 3'bxxx;
always @(posedge clock)
 if (reset)

 state = st0;
 else
 state = nextstate;
always @(state or in)
 begin
 out = 2'b00;
 nextstate = st0;
 case (state)
 st0: casex (in)
 1'b0: begin
 nextstate = st5; out = 2'b1x;
 end
 1'b1: begin
 nextstate = statex; out = 2'bxx;
 end
 endcase
 st1: casex (in)
 1'b0: begin
 nextstate = st0; out = 2'b00;
 end
 1'b1: begin
 nextstate = st1; out = 2'b01;
 end
 endcase
 st2: casex (in)
 1'b0: begin
 nextstate = st3; out = 2'b10;
 end
 1'b1: begin
 nextstate = st2; out = 2'b0x;
 end
 endcase
 st3: casex (in)
 1'b0: begin
 nextstate = st4; out = 2'b11;
 end
 1'b1: begin
 nextstate = st2; out = 2'b0x;
 end
 endcase
 st4: casex (in)
 1'b0: begin
 nextstate = statex; out = 2'bxx;
 end
 1'b1: begin
 nextstate = st0; out = 2'b00;
 end
 endcase
 st5: casex (in)
 1'b0: begin
 nextstate = st1; out = 2'b01;
 end
 1'b1: begin
 nextstate = st6; out = 2'bx0;
 end
 endcase
 st6: casex (in)
 1'b0: begin
 nextstate = statex; out = 2'bxx;
 end
 1'b1: begin
 nextstate = st6; out = 2'bx0;
 end
 endcase
 st7: casex (in)
 1'b0: begin
 nextstate = st1; out = 2'b01;
 end
 1'b1: begin
 nextstate = st4; out = 2'b11;
 end
 endcase
 endcase
 end
endmodule

