
9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 169

Abstract—This paper is focused on the idea of designing and

implementing an original video interface inside modern
programmable digital circuits, like CPLDs and FPGAs. Such
an interface provides direct connection to a TV or VGA display
for microsystems with microprocessors or microcontrollers,
which can be useful in various application fields. The first step,
presented here from idea to optimal implementation, is the
design of a TV compatible synchro-generator that is the heart
of the video interface. Future research and development will be
the RGB video memory scanner for this TV mode and the
design of a new VGA compatible mode of the interface, to be
included in the same FPGA or CPLD circuit. This work can
also be considered a usage example of the new software
environment “Altium Designer” at enhanced schematic design
for programmable logic devices.

Index Terms—CPLD, FPGA, horizontal and vertical
counters, synchronization signals, micro-systems

I. INTRODUCTION
The idea of designing this video interface came to me

from development systems with microprocessors or
microcontrollers and from old home computers. Such a
development system is designed around one specific
microprocessor or microcontroller family, with enough
software and hardware resources to be universal, so it can be
used in learning phase, in the development and debugging of
software for dedicated systems, or for designing and testing
some hardware external interfaces used in specific
applications [1].

Generally, these kinds of systems have large external
ROM and RAM memory to hold a monitor program in
ROM which communicates by a serial link with a personal
computer to load programs in RAM, to display resources
and to receive commands, using only text modes. This
communication is mandatory for code loading, but in testing
phase it is quite incommode, because it limits learning
possibilities and experimental applications to only command
mode text display and the project cannot be tested in a real
industrial environment without the presence of a PC.

My thought was: what if the development system also had
a keyboard interface and a graphical display interface which
connects it directly to a classic TV set or a PC monitor? An
entire new field of learning possibilities, experimental
applications and uses opens in this situation, all related to
graphic display techniques. And further more, the system
board will be no more forever dependant on the PC
presence. The PC will be needed only for software
download and even that could be eliminated if a powerful
monitor program is used, with incorporated text editor,
assembler and debugger, like old home computers had.

It should be noted that, even for the classic RS 232 serial
link, some monitor programs with such capabilities already
exist, like “Ultramon” for 8051 family of microcontrollers.

My second thought was at old computers, like the well
known “ZX Spectrum” that had simple low resolution video
interface for a TV-PAL display [2]. A modern
implementation of such interface with programmable logic
devices can be made in high integration scale, using only
one FPGA or CPLD digital circuit for the entire design. This
kind of implementation can be made universal enough to be
compatible with most microprocessor and microcontroller
systems, taking benefit of the programmable logic design
versatility [3].

An actual medium sized FPGA circuit can hold even
more than the logic of the interface: the video memory that
holds the image information can also fit inside this chip if
the resolution is not increased too much. And a larger FPGA
can accommodate to hold the entire system, with
microprocessor core, system memory and other hardware
input-output interfaces.

This paper presents my original design solution of the
hardware module which generates the synchronization
signals for a TV-PAL mode display, often called the
“synchro-generator” [2]. This part is practically the heart of
the video interface, because it is the sequencer which
defines the image resolution, format and size, controls the
video memory scanning and the RGB serialization of image
pixels.

The synchro-generator is also the most difficult module to
design, because it works at very high speed and can be
implemented only in hardware, and because all the
waveforms of the signals that control the video interface are
hard to imagine and to describe. For this reasons this kind of
designs are very rarely approached.

On the other hand, this paper could also be considered
original from the perspective of describing new design
technologies in digital electronics, like the use of visual
symbols at high abstraction level (which are already
predefined in libraries) for FPGA or CPLD schematic
design in some new software environment like “Altium
Designer” [4].

II. DEFINING IMAGE PARAMETERS
The very first step in video interface design is to decide

the resolution of the image which will be displayed, in
pixels. Higher resolution means higher complexity and
higher speed for video circuits and also means more
processing power for the microprocessor or the

Designing the Synchro-Generator of an FPGA
or CPLD Video Interface for Micro-Systems

Aleodor Daniel IOAN
"Gh. Asachi" Technical University of Iasi

Bld. Dimitrie Mangeron nr. 53 A, RO-700050 Iasi
aioan@ac.tuiasi.ro

mailto:aioan@ac.tuiasi.ro

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 170

microcontroller in the system to use.
The interface described here is intended for small micro-

systems, 8-bit like, which are most used in all kind of
application fields. Such systems have limited processing
power and cannot efficiently use high available resolutions.

Because of this, I decided to keep the “ZX Spectrum”
original resolution of 256 x 192 pixels for graphic display
and 32 x 24 characters for text display [2], which is enough
for many applications. But because the “ZX Spectrum” had
4 colors only at character level (one character = 8 x 8 pixels)
and this reduces the graphic abilities of the interface, I
decided to raise the level of colors at 4 colors per each pixel.
Anyway, this increase in color resolution will only affect the
RGB scan generator and not the video sequencer described
here. The old “ZX Spectrum” home computer also had a
single color border margin around the active screen [2], to
obtain a perfect rectangular image in the center, because the
raster margins are not quite so linear on a TV display. This
border was also good for some video effects, so I decided to
keep it too.

The PAL TV standard [5] specifies a video image
composed from 625 lines, with 25 Hz frame rate frequency,
from which results a line frequency equal to 15625 Hz and a
line time interval of 64 uS (microseconds), with 52 uS the
visible part and 12 uS the horizontal retrace. Television
images are normally divided into two interlaced fields of
625 / 2 = 312.5 lines each, one formed with odd lines and
the other with even line lines, which are displayed in
sequence, with a field frequency of 50 Hz. It is not usual for
a computer generated picture to be interlaced, as this causes
a lot of vertical jitter as the fields swap.

The low vertical resolution of the interface allowed me to
use only one 312 lines field per frame, with a vertical
synchronization frequency of 50 Hz. The lost half line
allowed each field to be offset of the other when interlacing
(it adds and forms one line needed to pass from the even to
the odd field) and has no use in non-interlaced images.

Because the vertical retrace takes about 24 lines, only the
remaining 288 lines from the total of 312 are really visible
on the display. For a vertical resolution of 192 pixels, the
visible border will last for 288 – 192 = 96 pixels, and can be
divided in two symmetrical sections of 96 / 2 = 48 pixels
each, one at the top and the other at the bottom of the screen.

For implementation optimization purposes, I decided later
to add another 8 lines to the top border, which are normally
invisible, so the total vertical height of the image becomes
296 = 56 + 192 + 48 pixels. To maintain image symmetry, a
border of the same width should be used at the left and at the
right of the screen, so the total width of the image must be
352 = 48 + 256 + 48 pixels.

The final result of my research is presented in Fig. 1.
Image dimensions are given in pixels and in characters. The
necessary time to display a pixel is called “pixel period” and
is denoted by Tp. The character period Tc is 8 times greater
than Tp, because a character is composed from 8 pixels per
each line.

III. HORIZONTAL AND VERTICAL COUNTERS
The video interface works by scanning a video memory

that holds the information at consecutive addresses. At the
resolution required by this interface, the video memory can

be organized in words of 8-bit width and must have double
access path, one from the microprocessor of the system and
the other from the video interface. This width also meets the
architecture of the 8-bit micro-systems for which this
interface is intended.

The video controller loads 8-bits (practically the first line

of each character) simultaneously from the video memory
and shifts it bit-by-bit to the RGB outputs. To generate the
loading moments and to control the shifting, a 3-bit pixel
counter driven by the pixel clock is required, which
increments the pixel address within one character line from
0 to 7. This 3-bit counter also divides the pixel clock
frequency by 8, to generate the character clock frequency.

The pixel clock period must be lower than the duration of
a visible PAL TV line [5] divided by 352 (Tp < 52 uS / 352)
to display at least all the image width mentioned above,
including the border. Another condition for the pixel clock
frequency is that it must be an exact multiple of the
horizontal frequency (15625 Hz) to generate precise
synchronization pulses. The smallest integer value that
meets these requirements is 7 MHz (megahertz) for the pixel
clock frequency. This value also generates square pixels on
the screen at the considered resolution.

The 7 MHz pixel clock frequency is exactly 448 times the
horizontal frequency, and this means that an entire video
line will be exactly 448 pixels = 56 characters in length,
from which are visible only 352 pixels = 44 characters on
the display, the rest of 96 pixel = 12 character periods being
necessary for the horizontal retrace time.

I used a horizontal 6-bit counter driven by the character
clock, which increments from 0 to 55, to generate the
address for the characters on a screen line and to determine
the changing moments for the horizontal border, sync and
blank signals, as in the time diagram shown in Fig. 2.

The active video line actually starts with the left border,
immediately after the deactivation of the horizontal blanking
signal HBLNK, but the counter starts with the screen line
because it must generate the 5-bits address that selects one
of the 32 screen characters to display. Only addresses that
begin with zero (from 0 to 31 in this case) can be used to
drive video memory address inputs directly.

As it can be seen from the timing diagram (Fig. 2.), the
counter value is increased starting from zero and when it
matches a specific value the control signals will change.

56Tp
7Tc

48Tp
6Tc

48Tp
6Tc

Figure 1. Dimensions of the display image in pixels and characters.

256Tp
32Tc

352Tp
44Tc

296Tp
37Tc

192Tp
24Tc

48Tp
6Tc

DISPLAY BORDER

DISPLAY BORDER

DISPLAY
SCREEN

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 171

In this way, by decoding the counter outputs, can be
generated all the control signals of the video sequencer.
Three signals must be generated to control the display on
horizontal: the border signal (HBORD) that switches the
display from screen to left and right borders, the blanking
signal (HBLNK) that turns off the display spot during
horizontal retrace and the synchronization signal (HSYNC)
that starts this retrace at the end of a visible display line.

The counter must be synchronous to change all its outputs
simultaneously and it must have a synchronous reset input
too, so it can be restarted from zero in the precise moment
when the character clock changes, exactly one period after
reaching its final value.

To generate the address for the lines on a screen frame
and to determine the changing moments for the vertical
border, blank and sync signals, a 9-bit counter is needed,
which increments after each line has passed, from 0 to 311.
The counter must be driven by a line clock with period TL =
Tc / 56, that changes at the end of each line. The most
convenient way to clock the vertical counter is by using the
blanking signal generated by the horizontal counter, which
activates at the end of a line, before the horizontal retrace.

Like for the horizontal counter, the first 8-bits of the
vertical counter are also used to generate the address that
selects one of the 192 screen lines to display. The counter
starts with screen lines, because only the addresses that
begin with zero (from 0 to 191) can be used to drive directly
the remaining video memory address inputs, even if the real

physical frame starts with the top border.
The video memory address will be formed from the least

significant 8-bits of this vertical line counter and from the
least significant 5-bits of the horizontal character counter,
organized together in a 13-bit wide bus (LA[7..0],CA[4..0]).

This will give a total memory capacity of 8 Ko (kilo-
octets) for each video page, even if this will not be entirely
used, because the interface resolution needs only 6 Ko = 32
pixels x 192 lines capacity to hold the information for one
color of the screen pixels. All the pages use the same video
address bus, but with distinctive 8-bit data buses, to
implement different colors per each screen pixel. To obtain
4 colors per pixel, the video interface will use 4 paged
memory modules of 8 Ko, each with its own shift register
driven by the pixel clock, for octet serialization to the RGB
lines.

In Fig. 3. is presented the timing diagram with the values
of the vertical counter which determines the changing
moments for the vertical signals: the vertical border signal
(HBORD) that switches the display from the screen to top
and bottom borders, the blanking signal (VBLNK) that
prevents the lines from being visible during vertical retrace
and the synchronization signal (VSYNC) that brings the
display spot back to the beginning of the next frame.

Conform to the PAL standard [5], the vertical blanking
signal should be about 24 lines, that means with 8 lines
wider than 16 TL line periods, like is considered in the
timing diagram from Fig. 3.

VBLNK

VSYNC

312 TL
TOTAL VERTICAL FRAME TIME

120 TL
VBORD

192TL
VERTICAL SCREEN

56 TL 48 TL

TOP
BORDER

16TL BOTTOM
BORDER

SCREEN FRAME
(192 LINES x 1 PIXEL = 24 CHARACTERS x 8 PIXELS)

137h 00h BFh C0h
EFh F0h

137h 00h
FFh 100h

Figure 3. Line counter values which define changing moments of the vertical signals.

LINE ADDRESS COUNTER ROLLOVER

56Tc
TOTAL HORIZONTAL SCANLINE TIME

24Tc
HBORD

32Tc
HORIZONTAL SCREEN

RIGHT
BORDER

2Tc LEFT
BORDER

HSYNC

12Tc
HBLNK

6Tc SCREEN LINE
(32 CHARACTERS x 8 PIXELS)

27h 28h
37h 00h

1Fh 20h

25h 26h 2Bh 2Ch 37h 00h

31h 32h

4Tc

CHARACTER ADDRESS COUNTER ROLLOVER

Figure 2. Character counter values which define changing moments of the horizontal signals.

6Tc

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 172

Nevertheless, the implementation complexity is directly
dependant on the total number of counter value testing
points and this approach would lead to one more changing
point in the time diagram, which should be also detected. To
optimize the design implementation and because the
blanking signal begins at the same moment with the
synchronization signal that starts the vertical retrace, I used
a VBLNK signal that ends sooner by 8 lines, together with
the VSYNC signal. This increased the duration of the top
border from 48 to 56 lines, but this 8 additional lines are not
normally visible on the screen, so this is a quite good
solution.

IV. FPGA IMPLEMENTATION
To test different implementations of the video sequencer

described above, I used a development board with a
Spartan-3 FPGA device [6]. If the project is well designed
from the beginning, an additional simulation stage before
the physical implementation is not very useful, because the
simulation presents the system functionality as it should be,
without considering the real system behavior. Because the
video interface is a quite complex design, it is better to use a
real board to test the FPGA mapping and routing of the
implementation directly using a development board and a
TV monitor. Following the image on the display, I was able
to correct some design mistakes and to modify the
implementation to eliminate errors appeared due to the
propagation and commutation delays in and between the
CLBs (configurable logical blocks [7]) used inside the
FPGA chip.

The classical implementation technique of a design that
uses programmable digital circuits is based on the use of a
hardware description language, like “Verilog” or “VHDL”
to obtain a textual description of the design, which is then
synthesized using specific tools, provided by the chip
manufacturer [3]. Such a description must be realized at the
register transfer level (RTL), because the behavioral
approach do not always generate a synthesizable code and
the designer has no direct control of the implementation.

The RTL description has no visible advantage over a
schematic description, because it uses the same basic
building pieces and offers no graphical view of the design. It
is interesting that even the modern software development
environments have actually moved to use a visual code
design which offers better intuitive approach. A hardware
design using text instead of schematic description is quite
unusual, as the hardware engineer is more familiar with
intuitive drawings than with the use of a textual code.
Unfortunately, almost all software tools provided and
developed by the main FPGA producers offers weak
schematic support for the design.

I have made for this implementation a schematic
description by using the new software environment “Altium
Designer” [4], a tool well known by the electronic engineers
which design schematics and printed circuit boards for
electronic devices. This software has very special graphic
facilities for schematic drawing, but it is less known that it
supports FPGA design too. The “Altium Designer”
environment can be used in CPLD and FPGA designs, by
drawing the schematic at high level of abstraction with
graphical symbols available to use from generic and specific

libraries. The high level of abstraction resides in the variety
of available schematic symbols for almost all the circuits
and modules generally used in a hardware design, which
have both single pin and bus versions.

After this schematic was drawn, it is then translated to a
specific format and the software launches third party
specific tools provided by the chip manufacturer for the
synthesis process, the resource mapping, the placing and
routing process and for downloading the obtained bit stream
to a real live board [4]. In this way, the design process is
independent from the specific tools knowledge, it can be
used with most available FPGAs from various producers
without any change and the optimal implementation is still
maintained due to the background usage of the specific
vendor tool, which is transparent to the designer. Another
main advantage of this new software environment is that all
the above processes can be easily launched by a simple
click, allowing the designer to focus on its project and not
on the tool usage learning.

Using an evaluation version of the “Altium Designer”
software environment, together with the “Xilinx ISE
WebPack” free tool which is launched in background, I have
succeeded to implement a functional schematic for this
video sinchro-generator, after some unsuccessful iterations.
The implementation was tested on a “Digilent Spartan-3”
development board, connected to a PC by the JTAG-3
parallel cable [8]. The clock generation part of the schematic
that includes the implementation of the pixel counter, the
horizontal and the vertical counters is presented in Fig. 4.

This board is based on a Xilinx XC3S200 from the
Spartan-3 FPGA family [6] and has an integrated oscillator
that provides 50 MHz clock frequency. To generate a 14
MHz (megahertz) clock, which is double of the pixel clock
frequency, I used one special digital clock manager (DCM)
module available in Spartan-3 FPGA series, which has a
digital frequency synthesizer block (DFS) capable to derive
other frequencies at the CLKFX output from the input
frequency CLKIN, using he following formula [6]:

DIVIDECLKFX
MULTIPLYCLKFXff CLKINCLKFX _

_
⋅= (1)

The CLKFX_MULTIPLY and CLKFX_DIVIDE are 5-
bit integer constants, ranging from 2 to 32 and from 1 to 32,
respectively. For 14 MHz frequency output, I used a 7 / 25
factor in the formula (1) which was set by schematic symbol
parameters. I have chosen to start from a double clock
frequency because, if a CPLD implementation might be
made in the future, an external clock oscillator would be
needed, the CPLD circuits having no such DCM modules.
An external oscillator with quartz crystal is easier to find at
14 MHz and this doubling allowed me to also use a 4-bit
(divide-by-16) pixel counter available as one single
graphical symbol, instead of a 3-bit one which is not.

All the counter symbols used in the schematic (Fig. 4.)
are bus versions of synchronous counters with clock enable
and synchronous reset. The pixel counter generates the pixel
address outputs PA[3..0] which will be used for video
memory load and serialization. The PA3 output is also used
as an inverted clock signal to drive the horizontal counter,
which is made from two 4-bit and 2-bit counters for
optimization purposes, with buses joined together by special
symbols to form the CA[5..0] character address bus.

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 173

Figure 4. Schematic diagram used to implement the clock generator and the pixel-character-line counters.

The 9-bit vertical counter which generates the line

address bus LA[8..0] is clocked by the HBLNK signal
decoded from the horizontal counter and it is implemented
using one 8-bit predefined counter and a distinctive edge
triggered D-type flip-flop, with clock enable and
synchronous reset too. As mentioned before, the horizontal
counter divide-by-56 the pixel frequency to obtain the
character frequency and the vertical counter divide-by-312
the character frequency from the first one to obtain the final
50 Hz frame frequency.

To reset the counters when they reach maximum values
(55, respectively 311), I used an elegant method by
detecting only the moment when the appropriate bits
become logical “1” in the counter word combination. The
counters only increase their values and there is no possibility
to reach another binary combination with the same bits at

logical “1” too, because they will rollover back to zero at
first such detection. An AND gate detects the reset
combination and activates the reset input for the counters,
which will be considered immediately on the next clock
positive edge. The splitting of the horizontal counter in two
also allowed me to use the terminal count output from the
second 2-bit part, which is active only when this counter
part reaches “11”. This reduced the number of required
inputs for the AND gate by one.

The schematics used to generate the horizontal and
vertical signals by detecting when the counter value is in a
specific range are presented in Fig. 5. This optimal logic
was obtained by inspecting values from the timing diagrams
and not by using any kind of minimization algorithm. There
are two approaches of signal activation while the counter is
between two specific values [9].

Figure 5. Schematics used to implement the horizontal and vertical signals by detecting counter combinations.

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 174

The first solution is to use a combinatorial logic to decode
all the combinations from the activation interval. This
approach is advantageous only when the value range is
between powers of two, when the logic becomes simpler,
but it can also generate short glitches due to the different
propagation delays when more bits are changing
simultaneously, as the counter increases (propagation hazard
[9]). I used this method for HBORD and HSYNC signals,
and for all the vertical signals, avoiding different
propagation delays for a gate, when its inputs change
simultaneously.

The second method is to use a sequential logic with flip-
flops which are set when the counter reaches the activation
combination of the signal and reset when the counter
reaches the deactivation combination. This approach will
lead to simpler decode logic and reduces the combinatorial
hazard, but it consumes more sequential resources. I used
this second method for HBLNK signal, because it is used to
clock the vertical counter, and it must be glitch free.

The vertical decode schematic also contains the necessary
logic to generate global BORD and inverted BLANK
signals. The vertical synchronization signal is generated by
inserting positive HSYNC pulses into the negative VBLNK
signal with a XOR gate, to achieve the characteristics of the
PAL sinchro-complex signal [5].

Figure 6. White central screen and black border on a small TV monitor.

V. CONCLUSION
The interface described here was tested on a small TV

monitor with RGB and SYNC inputs, by adding a
multiplexer that switches all the RGB outputs from logical
“1” to ground with the selection signal controlled by global
border signal BORD and with input enable controlled by the
global blanking signal BLANK, which was generated active
low. On the monitor display, a white rectangle was visible in
the center, with black border around, like in Fig. 6. This
confirms that the vireo sinchro-generator is working exactly
as proposed.

The next work will be to design, implement and test the
video memory scanner for this TV mode of the interface in
the same FPGA or CPLD circuit, to use it with a real micro-
system in a series of applications and the research to
develop a new VGA monitor compatible mode of the entire
interface.

Besides some applications that may have use of the
interface itself, this paper is also a good example for
interesting hardware design ideas and for new present
technologies used in programmable logic design (FPGA or
CPLD) implementation.

REFERENCES
[1] Stuart R. Ball, “The 8051 Microcontroller”, 4th edition, Prentice Hall,

2006.
[2] J. Naylor, D. Rogers, “Inside Your Spectrum. An Introductory Guide

to the Hardware”, Sunshine, 1984.
[3] S. Kilts, “Advanced FPGA Design. Architecture, Implementation and

Optimization”, John Wiley & Sons, Inc., 2007.
[4] Training Manual, “Altium Designer FPGA, Software and Systems

Development”, Altium Limited, 2007, Available:
http://www.altium.com/files/training/Module5FPGADesign.pdf.

[5] Recommendation ITU-R BT.470-6, “Conventional Television
Systems”, International Telecommunications Union, 1998, Available:
http://www.itu.int/rec/R-REC-BT.470/en.

[6] Complete Data Sheet, “Spartan-3 1.2V FPGA family”, Xilinx Inc.,
2007, Available: http://www.xilinx.com/support/documentation/

[7] data_sheets/ds099.pdf.
[8] S. Brown, J. Rose, “FPGA and CPLD architectures: a tutorial”, IEEE

Design & Test of Computers, Vol. 13, No. 2, IEEE Computer Society,
1996.

[9] User Guide, “Spartan-3 Starter Kit Board”, Digilent Inc., 2005,
Available: http://www.digilentinc.com/Data/Products/S3BOARD/

[10] S3BOARD-rm.pdf.
[11] M. Morris Mano, Charles R. Kime, “Logic and computer design

fundamentals”, 3rd edition, Prentice Hall, 2004.

http://www.altium.com/files/training/Module5FPGADesign.pdf
http://www.itu.int/rec/R-REC-BT.470/en
http://www.xilinx.com/support/documentation/
http://www.digilentinc.com/Data/Products/S3BOARD/

