
9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008 
 

         228 

 
 

Abstract—The paper proposed a service oriented approach 
for the modular architecture of an e-health system called 
Telemon. We identify the most important issues regarding the 
application interoperability and we proposed several solutions, 
following the SOA (Service Oriented Paradigm) paradigm. 
 

Index Terms—E-health, Design, SOA, Web Services 

I. INTRODUCTION 
This paper focuses on the component modules of an e-

Health system, called Telemon [1, 9]. Telemon is an e-
Health system, intended to allow real time patient 
monitoring by using Web technologies. The current work 
continues previous work described in [1]. Previously, we 
presented the context and the arguments that sustain our 
solution – an SOAarchitecture for the Telemon project.  

In order to create a viable architecture, we propose 
several important modules regarding certain aspects such as 
the user-interaction, the SSO-like user authentication, the 
message routing, the data storage, and the overall 
management of the application. 

The paper has the following structure: section II presents 
the most important aspects of SOA [12, 15] paradigm and 
section III gives information regarding the general 
architecture of the Telemon system. In section IV, we 
present a BPM (Business Process Modeling) analysis of our 
architectural approach and we detail the main Telemon 
components. The article ends with the conclusions and 
further work. 

II. SERVICE ORIENTED ARCHITECTURE 
The term SOA (Service Oriented Architecture) refers to 

the design of a distributed system. SOA is an approach that 
leads to take concrete decisions when you design concrete 
software architecture. Therefore SOA is a design 
methodology, aimed at maximizing the reuse of multiple 
services (possibly implemented on different platforms and 
using multiple programming languages)[14, 15]. 

In a SOA platform, the services generally have some 
important characteristics [3, 4]: 

• Services are individually useful – they are 
autonomous; 

• Services must be loosely coupled. This term implies 
that services discover the needed information at the 
time they need it. The benefits offered by this 
characteristic are: flexibility, scalability, ability to be 
easily replaced, and fault tolerance; 

• Services can be composed to provide other services. 

This promotes the reuse of existing functionality; 
• Services can participate in a workflow. An operation 

performed by a service will depend on the messages 
that are sent or received - service choreography; 

• Services can be easily discovered, eventually in an 
automatic manner. Therefore, services must expose 
details (and additional meta-data) such as their 
capabilities, interfaces, policies and supported 
protocols. Other details such as the programming 
language or the information about the platform are 
not useful for consumers and – usually – are not 
revealed. 

SOA is a paradigm based on three major concepts: 
services, interoperability through an enterprise service bus 
(ESB) and loose coupling. ESB is an infrastructure that 
enables interoperability.  

To use in practice services, we need an ESB, which role is 
to enable consumers to call the services providers. 

Mainly, ESB has the following responsibilities [4]: 
• Providing connectivity; 
• Data transformations;  
• Routing; 
• Dealing with security; 
• Dealing with reliability; 
• Service management; 
• Monitoring and logging. 

III. TELEMON ARCHITECTURE. AN OVERVIEW 
In [1], we proposed a general architecture consisting of 

two types of components: local sub-system components and 
a central system component. 

 
 
Figure 1.Telemon – general architecture. 

 
The local sub-systems are components that collect 

TELEMON – an SOA-based e-Health System. 
Designing the Main Architectural Components 

Lenuta ALBOAIE, Sabin C. BURAGA, Victor FELEA 
“A. I. Cuza” University of Iaşi, Faculty of Computer Science 

16, Berthelot Street, RO-700483 Iasi 
e-mail: {adria, busaco, felea}@infoiasi.ro 

mailto:@infoiasi.ro


9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008 
 

         229 

information from different sources (devices that observe the 
patient). All this information from local sub-systems is 
transferred (through an update mechanism) to the central 
system.  

The general architecture of our health system platform is 
depicted in Figure 1. 

We will outline the general structure of the components –
local subsystems and the central system, both of which 
conforming to SOA principles. For each of them, we will 
decompose the architecture in several levels. 

 

 
Figure 2. A sliced overview of a component. 
 

Each of the components consists of the following layers: 
• User-interaction layer; 
• Core layer; 
• Database layer. 
For the user-interaction layer, we consider our system is 

enriched with accessibility capabilities, from the user 
interaction perspective. The provided user-interface must 
support persons having various disabilities, according to 
WAI (Web Accessibility Initiative) [10]. The performed 
activities must be effective, efficient and secure, at the 
conventional Web browser level and at the mobile 
application level.  

An important feature will be the support offered by the 
GIS (Geographic Information Systems) [6] Web services, 
which will offer to authenticated patients the information 
about the known pharmacies, clinics, medical offices in their 
proximity. 

Concerning the Telemon core layer, from the technical 
point of view the system must conform to the SOA 
paradigm. This layer consists of a set of modules detailed in 
the next section.  

The aimed architectural solution will be a multi-platform 
one, loosely coupled, facilitating the integration of 
applications, services and systems at the Web level. 

The system performance will be assured due to the 
scalability of the architecture based on actual Web standards 
(XML, SOAP, WSDL, REST, WS-*, etc.) [2, 4, 10, 11,13]. 
Also, Telemon can be integrated in so called e-Health meta-
systems, like ARTEMIS [5] or Semantic Health [8], which 
are able to integrate different other e-Health systems, in 
order to share information and access a larger amount of 
data. 

Using SOA architecture is beneficial for our system since 
it allows easily adding new features without modifying the 

existing ones. Because these are based on existing services, 
the code reuse is maximal, and then development and testing 
time is minimal. 

At the database level, Telemon comprises two types of 
databases. The one located at the sub-system level is an 
operational database that records data sent by the sensors 
(they are named “source databases”). The other is a 
warehouse and is located at the central system level. All 
information is stored at this level. 

IV. ARCHITECTURAL COMPONENTS OF THE 
TELEMON SYSTEM 

For our architecture, we have two kind of ESB: 
• In the local sub-systems, an ESB will provide a 

point-to-point connection.  In this case, the consumer 
knows the endpoint and sends the request to a 
specific receiver. This type of connection has a 
problem when the receiver is not available; in this 
case the call will fail; 

• Between central system and the rest of components, 
an ESB will offer a mediation connection. In this 
case, the consumer does not need to know the 
endpoint of the provider. The consumer will supply 
certain service identifiers like a tag that ESB 
interprets and find an appropriate provider. A tag 
contains service name and other elements such as 
routing information, accessing information, etc. 

The advantage of this approach is that ESB can deal with 
dynamic changes of SOA components. 

First step in our proposed architecture is to clearly define 
roles, policies and processes. The processes define a service 
lifecycle and implementing model-driven service 
development. 

We discuss about necessary components for local sub-
system architectures, and we take in count two directions: 
the consumer point of view (our consumer can be a patient 
or some person from medical staff) and the backend “point 
of view”. 

We identify the following modules:  
• Frontend module,  
• Identity management module,  
• Service management module,  
• Routing module, 
• Database module, 
• Management application module, 
• Warehouse management module. 
The frontend module guarantees the user interaction with 

the system, at the user-interaction level in Telemon 
architecture. 

The identity management module assures the 
authentication and authorization of users.  

Within Telemon, the information can be accessed using 
an automated authentication and authorization system that 
allows a user that is authenticated and authorized on a local 
sub-system, to be automatically authenticated and 
authorized on the central system. The procedure works the 
other way around as well, that is, the user that is 
authenticated in the central system will be automatically 
authenticated in all the local sub-systems. The authorization 
to access information is based on user types and user groups 



9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008 
 

         230 

(family doctors, specialist doctors, statisticians, researchers, 
patients). Furthermore, logging out from a local sub-system 
involves logging out from the central system. 

To achieve this goal, we use a single sign-on (SSO) 
mechanism, which – according to [7] – is a system whereby 
a single action of user authentication and authorization can 
permit a user access to all computers and systems where 
she/he has access permission to, without the need to enter 
multiple passwords. Single sign-on reduces human error, a 
major component of systems failure and is therefore highly 
desirable for this kind of e-Health systems.  

The service management module is a component that 
assures the access to available services.  

The routing module guarantees that a request can reach at 
the Service Module level. 

The database management module is a wrapper for local 
database and the management application module will allow 
operations that are not available for the customary user or 
medical staff – for example, log verifying or the 
management of update operations. This module interacts 
with the database component. 

In the next paragraphs, we will describe the overall 
process from the user point of view. 

When a customer needs by a generic service, the 
following general steps must be performed: 

• Authentication and authorization realized by the 
identity management module; 

• The request of user is routing (through the 
routing module) to the service management 
module (in local sub-system case, we have an 
ESB point to point connection). 

• Sometimes, certain transformations are 
necessary to change data from one format to 
another format supported by system; in this case, 
the data transformation module is used. 

In Figure 3 is depicted the local subsystem architecture. 

 
 
Figure 3. Local sub-system architecture. 
 

The warehouse management module is a wrapper for the 
central system warehouse. This module interacts – using 
special services – with the database management modules 
from every local subsystem. Therefore, in the warehouse we 
can find consistent data from any local sub-systems.  

All this data came from services like consumer services 

which can be: update services or can be a particular request 
data service. 

The source databases feed the warehouse with data. Our 
system, partially decentralized, ensures the data transfer 
from the local sub-systems to the central system. 

To optimize the data traffic we design two different types 
of warehouse updates: instant updates and periodical 
updates.  

Periodical updates are done on a regular basis and they 
apply to all the data. The instant updates depend on an 
emergency threshold, which refers to the severity of the 
patient’s condition. 

In the cases where the severity is above the emergency 
threshold, an instant update is applied in the warehouse. 

This is crucial when an emergency case occurs and the 
doctor can consult the specialists that are logged in the 
central system at that time. The specialists logged into the 
central system are automatically logged on to the local sub-
system (for example, using an OpenID module). In this 
manner, they can interfere in the patient treatment directly in 
the local sub-system in whose proximity the patient is 
situated.  

The information concerning the treatment synchronizes 
back with the central system via the periodical or instant 
updates. Furthermore, when there is a serious case of a 
similar type in another sub-system, the doctor who is logged 
on there consults the warehouse to get the previous 
treatment in order to take a decision. 

Figure 4 denotes the modules we described earlier from 
the perspective of the central system architecture.  

 

 
 
Figure 4. Central system architecture. 
 

SOA is a concept for large distributed systems [16]. Our 
architecture respects the properties of large distributed 
systems. From this point of view, we must consider the 
following important characteristics: 

• Legacies: these mean that our SOA architecture 
must be integrated within an existing framework.  
In fact, SOA is an approach for the maintenance 
of an existing system. 

• Redundancy: it is difficult to eliminate 
redundancy in a real system and it is not possible 
to have all data normalized and stored in only 



9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008 
 

         231 

one place. So, the solution is maintaining 
consistency. For that, we must develop special 
update services. 

• Bottlenecks: this problem creates difficulties for 
scalability. 

• Heterogeneity: an SOA architecture deals with 
these situations. We can meet heterogeneity at 
many levels: platforms, programming language, 
technology, and vendor diversity. In our case, we 
consider a homogeneous system. The 
heterogeneity problem will appear when we 
integrate our system with other e-Health 
systems. 

• Loose coupling: a minor problem can stop all 
functionality. To avoid that we must consider the 
following aspects: flexibility, scalability, and 
fault tolerance. 

Loose coupling is a concept of minimizing dependencies. 
Even a problem appears the system still runs. For example 
in our case if a local sub-system is temporarily down, 
information belongs to that point can be accessed from 
central system.  

In the same time, if the central system is down, local sub-
system will store all information and will run in an 
independent way. Therefore our system treats fault tolerance 
and flexibility problems. 

Other two important aspects concern the reliability and 
performance.  

For our system, ESB contains a module that deals with 
reliability issues. Also, we plan to design a BAM (Business 
Activity Monitoring) module. This module allows us to 
learn about the state of our system (e.g., if a certain service 
is often call). 

V. CONCLUSIONS 
The paper provided an analysis of use of the SOA 

paradigm in the context of an e-health Web-based system, 

called Telemon [1, 9]. We proposed several important 
modules regarding certain aspects such as the user-
interaction, the SSO-like user authentication, the message 
routing, the data storage, and the overall management of the 
application. Our approach was focused on the use of ESB 
(Enterprise Service Bus) techniques. 

Our further direction of research is to provide more 
detailed view of the each module structure and to study the 
multiple problems that can arise, including the possible 
technological solutions. 

REFERENCES 
[1] L. Alboaie, S. Buraga, ”Service-oriented architecture for health 

systems,” Proceedings of the e-Health and bioengineering (EHB 
2007) Workshop, 2007 

[2] T. Bray et al. (eds.), Extensible Markup Language – XML 1.0 (Fourth 
Edition), W3C Recommendation, Boston, 2006 

[3] T. Erl, Service-Oriented Architecture: Concepts, Technology, and 
Design, Prentice Hall, 2005 

[4] N. Josuttis, SOA in Practice. The Art of Distributed System Design, 
O’Reilly, 2007 

[5] ARTEMIS Project, Available: 
http://www.srdc.metu.edu.tr/webpage/projects/artemis/ 

[6] Geographic Information Systems, Available: http://www.gis.com/ 
[7] Single Sign-On, Available: http://www.opengroup.org/security/sso/ 
[8] Semantic Health, Available: http://www.semantichealth.org/ 
[9] Telemon Project, Available: http://thor.info.uaic.ro/ ˜telemonfcs/ 
[10] World Wide Consortium, Available: http://www.w3.org/ 
[11] WSDL (Web Services Description Language), Available: 

http://www.w3.org/TR/wsdl 
[12] Ramesh Loganathan, Poornachandra Sarang, Frank Jennings, Matjaz 

Juric, SOA Approach to Integration, 2007 
[13] Eric Newcomer, Understanding Web Services: XML, WSDL, SOAP, 

and UDDI, Addison-Wesley 
[14] Leonard Richardson and Sam Ruby, RESTful Web Services, 

O’Reilly, 2007 
[15] L. Alboaie, S. Buraga, WebServices (in Romanian), Polirom 

Publishing House, Iasi, 2006 
[16] George Coulouris, Jean Dollimore, Tim Kindberg, Distributed 

Systems: Concepts and Design, 2002, Addison-Wesley 
[17] Thomas Erl, Service-Oriented Architecture: A Field Guide to 

Integrating XML and Web Services Prentice Hall, 2007

 
 

http://www.srdc.metu.edu.tr/webpage/projects/artemis/
http://www.gis.com/
http://www.opengroup.org/security/sso/
http://www.semantichealth.org/
http://thor.info.uaic.ro/
http://www.w3.org/
http://www.w3.org/TR/wsdl

