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Abstract—We present a simple procedure for modeling 

shapes and trajectories of points using cubic polynomial 
splines. The procedure may prove useful for researchers 
working in the field of pattern recognition that are in the 
search of a simple functional representation for shapes and 
which are not particularly interested in diving into the high-
theoretical aspects of more complex representations. The use of 
splines brings in a few advantages with regards to data 
dimensionality, speed and accuracy of processing, with 
minimal effort required for the implementation part. We 
describe several algorithms for data reduction, spline creation 
and query for which we provide pseudo code procedures in 
order to demonstrate the ease of implementation. We equally 
provide measurements on the approximation error and rate of 
data reduction1. 
 

Index Terms—spline, cubic polynomial, pattern recognition, 
algorithms, shape modeling, curves, approximation error, 
Haussdorff distance 

I. INTRODUCTION 
The main purpose of this paper is to present researchers 

working in the field of pattern recognition with a simple and 
low-cost procedure for modeling shapes and raw trajectories 
of points in the plane. Although the process is very simple, 
the advantages are multiple: reduction in the dimensionality 
of data being stored, smoother shapes and increased 
accuracy of processing due to re-sampling at custom 
resolutions. 

Although there are thorough procedures that allow for 
modeling shapes using splines (see B-Splines) or wavelets 
[5, 6] with accurate and precise control, their understanding 
and use in practice may prove hard to achieve for novices or 
they may demand additional attention in order to understand 
their underlying full potential (or equally may lead to 
unwanted side effects due to misuse). We present a simple 
solution for modeling general shapes or trajectories of points 
that is easy to implement and gives good results in practice. 
We equally provide pseudo code of the various algorithms 
as well as a discussion on the approximation error and data 
reduction rates. 

II. PRE-PROCESSING DATA 
The original (sometimes raw) data given as a series of 

points, as it was acquired or computed from various sources, 
may be subjected to acquisition errors, computation 

                                                           
1 The work on this paper was funded by the INTEROB  project, through 

contract 131-CEEX II03/02.10.2006 

truncation errors or may contain too many points than 
needed. We start by pre-processing the original data using a 
simple filtering algorithm inspired from the Douglas-
Peucker poly-line reduction algorithm [1]. The raw data may 
be looked at as a series of r two-dimensional points sampled 
at equal intervals of time: 

 
( ) ( ) ( ) ( )( ){ }TrpTpTppp ⋅−⋅= 12,,0 K   (1) 

 
where T is the sampling interval in time and pi = p(i⋅T) = (xi, 
yi) ∈R2 represents the ith two-dimensional sampled point. 
 

An initial simple filter that may be applied on the raw 
data consists in removing all the points that are too close to 
their neighbors than a given threshold eps. The principle is 
illustrated in Figure 1 while the pseudo code procedure 
DATA-REDUCTION-1 is listed under the appendix. The 
complexity of the algorithm is O(r) where r is the length of 
the points array. 

 

 
 
Figure 1. Data Reduction, 1st filter: points that are closer than a given 
threshold eps with respect to their neighbors may be removed. 
 
 

 
 

Figure 2. Data Reduction, 2nd filter: points that are closer than a given 
threshold value eps from the line segment between their previous and next 
neighbors may be removed. 
 

We may further consider a second filter for which we see 
as superfluous hence removable all the points pj of the raw 
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data trajectory for which the Euclidean distance to the line 
segment having as extremities the previous and the next 
points pj-1 and pj+1 is less than a given error margin eps. 
Even more, we can further enhance the filter by removing 
all the points pj that lie between two points pstart  and pend 
with start < j < end, start, j, end ∈{0..r-1} if the average 
Euclidean distance from all the points pj  to the line segment 
having as extremities pstart  and pend is less than eps. The 
principle is illustrated in Figure 2 while the data reduction 
algorithm is given as a pseudo code procedure DATA-
REDUCTION-2 under the appendix. The complexity of the 
algorithm is O(r2) where r is the length of the points array. 
A faster version with several enhancements running in 
O(r⋅log(r)) is described in [1]. 
 

The opposite operation for data reduction is data 
enhancement. After the original trajectory has been reduced 
by consecutively running the two filters, it is sometimes 
useful to insert a number of N linearly interpolated points 
between any two consecutive points pi and pi+1. The reason 
for this is that further modeling of the reduced points using 
splines leads to a much finer and smoother result but this 
step is not mandatory. Usually, good results are obtained for 
N=2 or N=3 points. Figure 3 illustrates the insertion 
principle while the linear interpolation pseudo code 
procedure DATA-ENHANCEMENT-1 is given under the 
appendix. The complexity of the algorithm is O(N⋅r) where r 
is the length of the points array but it may be considered as 
O(r) due to the fact that N takes small values such as 1, 2 or 
3. The decision to insert additional points may be further 
constrained by the actual distance between the two 
consecutive points pi and pi+1 with respect to a given 
threshold value eps. 
 

 
 

Figure 3. Data enhancement: linear interpolated points are inserted in the 
reduced trajectory.  

III. CATMULL-ROM SPLINES 
Splines represent a powerful mathematical tool for the 

representation of curves through the means of control points 
at given timestamps (knots) and blending functions that 
allow computation of the curve points [2]. 

Catmull-Rom splines are a family of cubic interpolating 
splines defined such that the tangent ti at each control point 
pi is calculated using the previous and next points on the 
spline, pi-1 and pi+1: 

 
( ) ( ) ( )iiiiiii pprpprt −⋅−+−⋅= +− 11 1

r  (2) 
 
The spline is completely defined by its control points pi 

and their associated tangents ti as Figure 4 illustrates. The ith 
segment of the spline is defined between the control points 
pi and pi+1 as cubic polynomial: 
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where u is a local parameter that varies between [0..1]. The 
coefficients ck, k=0..3, are computed for each segment using 
end continuity conditions: 
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The above system may be put under the concise form:  

 
C= G ⋅ P (5) 
 
where C is the coefficients vector C=[c0 c1 c2 c3]T, P is the 
control points vector P=[pi-1 pi pi+1 pi+2]T and G is the 
geometry matrix given by: 
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(6) 

 
The parameters ri are known as tensions and affect how 

sharply the curve bends at the interpolated control point pi.  
A common value is 0.5 however ri may be determined by 
the length of the adjacent segments pi-1 pi and pi pi+1: 
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where |⋅| denotes the length of a segment. This choice of the 
tension values allows for each segment pi pi+1 to be pondered 
inversely proportional to its length when considered for the 
computation of the tangents. The result that is obtained in 
the end is a much smoother curve shape.  

The system (5) has a unique solution if ri ≠ 0 and ri+1 ≠ 1, 
conditions that are fulfilled due to the fact that 0 < ri < 1 as 
may be noted from equation (7). The algorithms for 
computing the tension values, tangents and for generating 
the Catmull-Rom spline from a series of points COMPUTE-
TENSIONS, COMPUTE-TANGENTS and GENERATE-CATMULL-
ROM-SPLINE are given in pseudo code under the appendix 
section. 
 

 
 

Figure 4. A Catmull-Rom spline is defined by a number of control points pi 
and the tangent at each point ti. 
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Creating a Catmull-Rom spline from a series of r points P 
is achieved with a complexity of O(r) as the r points are 
only traversed three times: in order to compute tensions 
O(r), tangents O(r), and finally to generate the spline 
coefficients O(r). Computing the point on the spline at a 
given moment T (querying the spline) is done in O(1) time 
as presented in the pseudo code procedure EVALUATE-
SPLINE listed under the appendix although even faster 
evaluation methods exist [3]. 

 
Catmull-Rom splines present several interesting 

properties [4]: 
i. They pass through all of the control points pi which 

are (usually) located at a time interval of 1 time unit 
away one from another. 

ii. They have local control which means that modifying 
one control point only affects the part of the curve near 
that control point. This can be seen from the system 
(4) where the coefficients of the cubic spline segment i 
only depend on the points pi-1, pi, pi+1 and pi+2. 

iii. Catmull-Rom splines are continuous functions of class 
C1, i.e. there are no discontinuities in the tangent 
direction or magnitude. They are not C2 continuous 
however: the second derivative is linearly interpolated 
within each segment causing the curvature to vary 
linearly over the length of the segment. 

iv. They present affine invariance which means that an 
affine change in the coordinates system does not affect 
the geometry of the curve. Practically, the curve shape 
rests the same whether it is rotated, scaled or 
translated. This is an important feature to have for 
pattern recognition problems that require affine 
invariance recognition: the invariance is acquired right 
from the very beginning as it comes from the 
representation form. 

v. Catmull-Rom splines are low-order cubic polynomial 
functions which makes them easy to compute. 

IV. SHAPES AS SPLINES FOR PATTERN 
RECOGNITION 

Representing shapes or trajectories of points as splines 
brings in several advantages: 

i. First of all, the dimensionality of data is considerably 
reduced. For example, the shapes illustrated in Figure 
5 are downsized as follows: flower (365 points 
downsized to 62), heart (241 to 34), butterfly (317 to 
31) and  rectangle (59 to 13) which translates into an 
average reduction rate of (356 + 241 + 317 + 59) / (62 
+ 34 + 31 + 13) = 973 / 140 = 6.95 or 7:1 ratio for the 
four cases. 

ii. Second, we benefit of a continuous C1 class function 
for representing shapes which allows the application 
of results directly from differential geometry. This in 
turn provides more accurate results for local or global 
shape parameters (such as tangents for example) 
instead of values that would have been otherwise 
computed using approximation methods. 

iii. The interpolating property of the spline may attenuate 
small execution mistakes or small acquisition errors, 
by providing in the end smooth curves. 

iv. Splines may be sampled at any given resolution, as 

fine as desired as Figure 6 illustrates. The samplings at 
different resolutions, coarser or finer, may be needed 
by further discrete computations. This useful property 
derives directly from the fact that our representation 
takes the form of a continuous function and hence we 
are allowed to select any sampling step TStep in the 
spline total time-length interval [0..T]. Equally 
important, the sampling may be done uniformly, at 
equally spaced intervals, or non-uniformly which is a 
definite improvement on the original series of raw 
points. 

v. As Catmull-Rom splines are affine invariant, the 
shapes representations present as well translation, 
rotation and size invariance which is a definitely plus 
for any classifier algorithm that is comparing or 
matching shapes. 

 

 
 

Figure 5. Original shapes (red) and splines (green) over-imposed. Control 
points of the splines are highlighted. Average data reduction for the four 
cases: 7 points to 1. 

 
 

Figure 6. Splines may be sampled at any resolution desired, fine or coarse, 
to accommodate further discrete computations. 

V. DISCUSSION 
We further address the approximation error as well as the 

data reduction rate that are introduced by spline modeling. 
The measurements are computed on a set of 4,800 shape 
samples which represent actual gesture trajectories as they 
were acquired from 10 subjects [8]. Sample shapes include: 
triangle, rectangle, caret, check, question mark, curly braces, 
etc. The entire set of gestures as well as details on the 
acquisition process and the database are given in [8]. 

Approximation error may be handled using the Hausdorff 
distance [7]. By definition, two sets of points are within 
Hausdorff distance r from each other iff any point of one set 
is within distance r from some point of the other set. 
Otherwise put, the Hausdorff distance between two curves is 
the greatest lower bound of the distance between the two 
curves. Given two curves p and q sampled into |p| and |q| 
points, the Hausdorff distance between them h(p, q) is 
computed as being the maximum distance between every 
point from the 1st curve p to its closest point on the 2nd curve 
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We define the approximation error (AE) as percentage by 

dividing the Hausdorff distance to the length of the 
bounding square of our shapes in the [-1,1]2 space: 

( ) 100
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,),( ⋅=
qphqpAE  (9) 

 
We may also compute the average Hausdorff distance as: 
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which gives the corresponding average approximation error: 

( ) 100
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We also compute the data reduction rate (RR) as the 

percentage decrease between the number of control points 
needed to store the spline (NSpline) and the original number of 
points (NOriginal): 

100⋅
−

=
Original

SplineOriginal

N
NN

RR  (12) 

 
Figure 7 presents the variation of the approximation error 
(computed as Hausdorff distance and average Hausdorff 
distance) with the variation of eps (threshold value used for 
filtering data). Figures 8 and 9 present the data reduction 
rate as absolute values as well as reduction percentage. It 
may be clearly seen that the greater the threshold value eps, 
the greater is the approximation error and the smaller the 
number of points needed to store the spline. In the average 
case, choosing eps of 2.5% of the length of the shape 
bounding rectangle (2.5 ⋅ 2 / 100 = 0.05), we obtain a spline 
representation which approximates the original data within a 
maximum Hausdorff distance of 5% (= 0.1) and average of 
1.5% (= 0.03) and we get a reduction rate of 77.77% 
(reduction from 70 to 14 points or 5:1). 

  
 

Figure 7. Approximation errors (AE) as Hausdorff and average Hausdorff 
distance versus the filtering threshold value eps. 

 
Figure 8. Data reduction as reduction rate (%) versus the filtering threshold 
value eps. 

 

 
 

Figure 9. Data reduction as absolute number of points (original and spline) 
versus the filtering threshold value eps. 

VI. CONCLUSIONS 
We presented a simple procedure for modeling planar shapes 

with cubic polynomial splines. The procedure is easy to 
implement and provides good results in practice as shown by 
computing the approximation error and data reduction rate on a 
large set of samples. We only discussed the 2D case but, apart 
from the examples illustrated, there is no actual limitation of 
the equations or algorithms to the two-dimensional plane. The 
same ideas may be directly applied to 3D modeling.  

We hope that (novice) researchers working in pattern 
recognition dealing with shape recognition and analysis will 
find the representation procedure useful due to the many 
advantages it brings (probably the most important one for 
practitioners is the affine invariance of the representation) yet 
its simplicity in implementation. 

APPENDIX A – PSEUDOCODE 
We list the pseudo code procedures for the various 

algorithms described in this paper. We do this in order to 
demonstrate the simplicity of the technique. In the following 
procedures, P is an array of points indexed from 0 to length[P], 
eps is a real-valued constant and r and t are arrays of real 
numbers. 
DATA-REDUCTION-1(P, eps) 
1 
2 
3 
4 
5 

for i ß 1, length[P] 
 ► Remove point P[i] if it is 
 ► too close to its previous neighbor 
 if EUCLID-DIST(P[i],P[i-1]) ≤ eps then 
  P ß P – {i} 
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DATA-REDUCTION-2(P, eps) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

st ß 0 
end ß 2 
while end ≤ length[P] 
 totalDist ß 0 
 allPointsUnderDist ß true 
 for i ß st+1, end 
  ► Update the total distance 
     dist ß EUCLID-DIST(P[i],P[st]P[end]) 
  totalDist ß totalDist + distance 
    

► Check average distance condition 
  if totalDist / (i- st) > eps then 
   allPointsUnderDist ß false 
   ► Exit for 
   i ß end 
   
 if allPointsUnderDist == true then 
  end ß end + 1 
 else 
  ► Remove points 
  P ß P – {st+1, st+2, .. end–2} 
  ► Increment start and end pointers 
  st ß st + 1 
  end ß start + 2 
 
► Remove points at the end 
P ß P – {st+1, st+2, .. end–2} 

 
 
DATA-ENHANCEMENT-1(P, N) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

P’ ß nil 
for i ß 0, length[P] – 1 
 for j ß 1, N 
  t ß (j – 1) / N 
  p’ ß (1-t)·P[i] + t·P[i+1] 
  ► Add interpolated point to the P’ 
  P’ ß P’ + {p’} 
 
► Add last point 
P’ ß P’ + {P[length[P]} 
return P’ 

   
 
COMPUTE-TENSIONS(P) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

► 1st tension needs to be approximated 
► because the previous point is n/a  
► use default value 
r[0] ß 0.5 
 
for i ß 0, length[P] – 1 
 distPrev ß EUCLID-DIST(P[i], P[i-1]) 
 distNext ß EUCLID-DIST(P[i], P[i+1]) 
 r[i] ß distPrev/(distPrev + distNext) 
 
► last tension needs to be approximated 
► because the next point is n/a 
► use default value 
r[length[P]] ß 0.5 
return r 

 
 
COMPUTE-TANGENTS(P, r) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

► 1st tangent needs to be approximated 
► because the previous point is n/a  
t[0] ß r[0]·(P[1] – P[0]) 
 
for i ß 1, length[P] – 1 
 t[i] ß r[i]·(P[i]-P[i-1]) +      
    r[i+1]·(P[i+1]-P[i]) 
 
► last tangent needs to be approximated 
► because the previous point is n/a  
n ß length[P] 
t[n] ß r[n]·(P[n] – P[n-1]) 
return t 

GENERATE-CATMULL-ROM-SPLINE(P) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

r ß COMPUTE-TENSIONS(P) 
t ß COMPUTE-TANGENTS(P, r) 
Time ß 0 
for i ß 0, length[P] – 1 

► Solve the 4-variable system 
► which has a unique solution 

    c[i][0..3]ß 
SOLVE(P[i],t[i],P[i+1],t[i+1]) 

► Each segment is defined over [0..1] 
Time ß Time + 1 

return c, Time 
 
EVALUATE-SPLINE(splineCoeff, Time, t) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

if t < 0 or t > Time then 
 return nil 
 
► Compute the segment index j 
j ß FLOOR(t) 
► and the local parameter u  
u ß t – FLOOR(t) 
return splineCoeff[j][0] +  
       splineCoeff[j][1]·u + 
       splineCoeff[j][2]·u2 +  
       splineCoeff[j][3]·u3 
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