
9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 325

Abstract—Facial expressions are very important in human
communications. Creating them programmatically, using a
muscle-based system, can greatly reduce the amount of time
needed to produce an animation. The main advantage of the
muscle approach is that the only thing that has to be done
before starting to animate a new character is to tailor the
muscle system to fit the new facial features. We describe a
mass-spring system used for the physical simulation of the
structure and dynamics of the facial muscles and the skin.

Index Terms—animation, biological system modeling,
dynamics, muscles, simulation software

I. INTRODUCTION
Creating realistic facial animations has always been a

challenge in computer graphics. Traditionally, animating a
human-like character is considered a difficult task, since it
requires a lot of talent and modeling experience. We
propose a muscle-based approach to the facial animation
problem. This approach gives the animator the possibility to
control the facial expressions of the character using the
muscles defined in the system. The muscles are connected to
each other, to the skin and to the skull. Their contraction
induces the movement of the skin, thus creating facial
expressions of the avatar.

The goal of the project is to create a three-dimensional
model of a human face, able to convey emotions resembling
in detail to human-like natural expressions to the users who
interact with it. When created, an emotional language will
permit the translation of the parameters of the system into
generally known emotions.

The possible applications of such a system are countless:
creating avatars for different interactive applications, that
are able to read a text or carry a conversation; create 3D
replicas of human beings and use them in teleconferencing
(so only the audio signal and the captured parameters are
sent through the network); create artificial tutors, that can
teach lessons and show emotional feedback (nod their heads,
gaze at the students, approve or disapprove their actions);
medical applications on which to study the new look of
expressions after facial or mandible surgeries and, of course,
creating computer-generated characters that play a part in
video games or movies.

This paper focuses on the mass-spring system that we
used as a physical framework, and on the structure and
dynamics of the muscles and the skin. It is organized as

* The work on this paper was funded by the InterOb project, through

contract 131-CEEX II03/02.10.2006

follows: the second section makes a tour among related
work, section 3 describes the physical system underlying the
muscles, sections 4 and 5 present the muscle and skin
models, section 6 summarizes the main developments that
we intend to add to the system in order to enhance its
behavior, and the last section gives the conclusions.

II. RELATED WORK
There are different approaches to creating facial

animations. They vary in the means they employ for
obtaining the animation and in the final result. The
explanation for such a wide variety of animation techniques
is simple: creating state-of-the-art facial animation is
difficult and expensive, both from an artistic and
computational point of view. Very complex animations,
which take into consideration accurate simulation of
different anatomical parts of the human head usually involve
huge computational load and could be cost prohibitive.
Therefore, most systems are focused on a specific goal and
they include into the model only the minimum resources that
allow them to fulfill the goals, thus minimizing costs.

The most widely used method for creating facial
animations is the morphing method. It implies having a set
of facial expressions of the model and a set of feature points.
The animation is obtained by interpolating the positions of
these points between one facial expression and the other.

There is a standard for defining the facial expressions,
called FACS (Facial Action Coding System). Paul Eckman
developed it in 1978 [1]. FACS proposes a mapping
between different movements and contractions of the facial
muscles and the name of the resulting facial expression. The
state of several muscles at a certain point in time is labeled
as an action unit (AU). Each of these action units
corresponds to a visible change in the facial expression of
the model. The original system included 46 AU. An
example is AU 26, lid tightener, created with the help of the
Orbicularis Oris and Pars Palebralis muscles.

Nedel and Thalmann [2] proposed a simulation system
where the forces inside a muscle are described using the
concept of an action line. An action line connects the origin
of the muscle to its insertion point. The action lines follow
the external shape of the muscle. To add volume to the
muscle, the action lines are subsequently connected
horizontally, using equally spaced ellipses. The resulting
lattice is introduced into a mass-spring system, and particles
are considered at the intersections between the action lines
and the horizontal ellipses. To preserve the volume of the
muscle during the contraction some extra springs are added,

Make it Smile :)
A Muscle-based Approach on Facial Animation

Emanuel DIMA1, Corina DIMA2, Dan CRISTEA1,2
1 ”Al. I. Cuza” University of Iaşi, Faculty of Computer Science*

2 Romanian Academy – the Iasi branch, Institute for Computer Science
{dimae, gvrinceanu, dcristea}@info.uaic.ro

mailto:@info.uaic.ro

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 326

called angular springs. For each pair of original springs, x0x1

and x1x2, two extra springs are added: one that connects the
ends of the original springs, x0x2, and one that connects the
particle x1 with the middle of the x0x2 spring. The interior of the
muscle in not modeled.

Another muscular model was the one used by Kähler [3]. In
his approach, a muscle is represented as a bundle of fibers, each
with a piecewise linear polygon as a control structure.
Geometric shapes are attached to the segments of this control
polygon. The fibers can form sheet muscles by grouping, while
the union of the geometric shapes attached to the segments
represents the muscle surface. This model supports two types of
contraction, a linear muscle contraction and a sphincter muscle
contraction.

III. THE PHYSICAL SYSTEM
In order to simulate movement of the skin and the muscles in

a physically correct manner, we need a system of objects that
observe some clearly defined physical laws. Our choice was to
implement a mass-spring system, that is, a system of mass
particles connected by springs that observe Newton’s laws of
motion and Hooke’s law of elasticity.

Each particle in the system has an identity, a position in a
three-dimensional space (x, y, z), a mass (m) and a velocity (v).
The fact that the particles have identity is not directly used, but
it implies that two particles with the same position and mass are
actually distinct. The mass of the particles in the system is a
parameter; at the initialization of the system, these masses as
well as their initial positions have to be specified. The particle
masses are computed by dividing the volume of the muscle by
the number of particles modeling it (this assumes that all
muscles have an uniform density). The positions of the particles
are modified by the system during the animation, according to
the laws of motion that take into account the velocity.

The springs (considered ideal) are characterized by an
elasticity constant (k), a default length (lr) and an actual length
(l). Each spring connects exactly two particles. The elasticity
constant and the default length are parameters of the spring; the
actual length is computed as the distance between the two
particles. A spring acts upon its particles with an elastic force
proportional to the elasticity constant and the difference
between its default and its actual length.

Although the model allows for a particle to be free (not
connected to any spring), in our model all particles are bound to
one or more springs. Our model also allows two particles to be
connected by more than one spring.

The mass-spring system has an initial default state, as
defined by the current position of all the particles. The system
advances from one state to another according to the
mathematical expressions of the physical laws that it emulates.
The new state is usually computed using numerical integration
methods.

We decided to use the Verlet integrator [4], as it provides a
good trade-off between speed and accuracy. It is a second order
integrator, usually used in molecular dynamics simulations,
faster than the Runge-Kutta method [5] and more accurate than
the Euler integrator [5]. Moreover, it simplifies the process of
introducing constraints in the movement of the particles.

According to the Verlet integrator, the mathematical formula
for the approximation of motion is

where x is the position of the particle, t is the current time, Δt
the quanta of time used in the iteration, and a is the acceleration
of the particle.

In our implementation, the advancement of the system from
one state to another is called a tick. The actual tick is detailed in
two steps: first, all the elastic forces, created by the springs, are
computed. At the end of this step, for each particle, we know
the net force of all the springs connected to that particle.

The second step consists of computing the actual movement
of each particle, according to the previous equation. The
acceleration is computed using Newton's second law, as the
ratio between the net force that acts upon the particle and the
mass of the particle.

The complexity of the algorithm we used is O(ns+np), where
ns is the number of springs and np is the number of particles, so
it is very efficient. However, in practice we would like to have
real time simulations for systems of tens of thousands of
particles and tens of thousands of springs. In order to achieve
real time performance we also implemented a multithreaded
version of the simulation engine. Running the system on a
machine with only two processing cores got inconclusive. We
expect, however, that moving the model on a real parallel
machine would bring a significant drop in computational time.

IV. MUSCLE STRUCTURE
We are keen to the idea that the realistic movement of a

muscle cannot be achieved unless its inner structure is
adequately simulated. We believe that a computer program will
reveal the subtle shades of human expression only when the
tissues of the human face will be modeled to the last cell. Till
then there is still a very long way. Although our model hides
the accurate details of organic tissue structure under the spring
model, which has distilled only the movement aspects, in itself
the model is able to accommodate such a level of detail that
would be added at some time in the future.

Our muscle structure is based on two three-dimensional
objects, created with a commercial modeling application1. The
first one represents the surface of the muscle, in our case
manually modeled based on anatomical references. There are
models of human anatomy created automatically using CT
scans2, but these are not suitable for our engine due to
differences in the way the anatomical parts are modeled.
However, a future adaptation of one of these more exact
representations is not excluded.

The second object is a three-dimensional poly-line that
represents the contraction axis of the muscle, specified by a
human modeler. This contraction axis is only an approximation,
as we don't know precisely the actual orientation of the
muscular fibers.

The muscle structure consists of a three-dimensional particle
lattice (particles connected by springs) that fills the inside of
the muscle, having a featured subset of springs that are oriented
on the direction of the muscle contraction axis.

The generation process of this lattice starts from the poly-
line. We consider several equally spaced reference points on it;
the distance between these points is a user-defined parameter.
Each such point is contained in a plane that is perpendicular to
the contraction axis. This plane intersects the surface of the
muscle, thus generating a planar polygon. The inside of this
polygon represents a muscle cross section that is perpendicular
to the contraction axis in the corresponding reference point.

We then consider the cross section with maximum area as
the main cross section. This cross section is filled with a planar

1 3ds Max,
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=5659302

2 Zygote project,
http://www.3dscience.com/3D_Models/Human_Anatomy/index.php

http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=5659302
http://www.3dscience.com/3D_Models/Human_Anatomy/index.php

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 327

lattice of mass particles and springs, actually a tessellation
made of equilateral triangles with the area specified at the
initialization. For each of the remaining cross sections, possibly
having a different form than the main one, we build an
analogous lattice through a bi-dimensional transformation,
keeping constant the number of particles. Currently this
transformation is based on radial similarity around the center of
mass of the cross section: this means that the ratio between the
distance from the center to a particle location and the distance
from the center to the polygon outline is constant over all cross
sections. Obviously, the lattices from the secondary cross
sections are not regular anymore: the triangles become
distorted. Yet, this approach has the advantage that the three-
dimensional lattice is not twisted, but is only squeezed (Fig. 1).

Figure 1. Detail of the structure of a muscle (three consecutive cross
sections with the main one located on the top).

One can notice that the distance between the points on the
contraction axis and the area of the equilaterals that tessellate
the main section determines the density of the lattice. Although
we tend to make these parameters ever smaller, in order to
maximize the resemblance with a real muscle, the
computational complexity stops us from modeling the muscle
as a really dense grid.

Figure 2. Detail of the structure of a muscle (cross section particles are
connected by longitudinal springs).

The final step consists in connecting all the planar lattices
through springs. As each cross section has the same number of
particles, a longitudinal spring links two corresponding
particles located on consecutive cross sections (Fig. 2). The
contraction of a muscle is achieved by decreasing the default

lengths of these longitudinal inter-section springs. These
springs can be considered as the basic units of the muscle; they
are the basic force generators.

Programmatically, the contraction of a muscle is specified by
a value between 0 and 1, 0 being the state of complete
relaxation (the initial state) and 1 the state of complete
contraction, when the muscle tends to flatten completely (Fig.
3).

Figure 3. Muscle contraction (Masseter Superficial). The right muscle is
completely relaxed; the left one is contracting. The muscle tension is
reproduced by the lighter color

V. SKIN STRUCTURE
It is generally recognized that the skin is difficult to simulate

and render realistically. Our implementation barely touches, for
now, the challenges of skin simulation.

Our approach is to generate the skin automatically, based on
the geometric information provided by the skull. The skin
geometry is realized through a web of particles, in the same
way as the muscles have been shaped. The particle system that
simulates the physical movements of the skin is made of
several layers, which simulate the three layers of the anatomical
skin: epidermis, dermis and hypodermis (Fig. 4). Three skin
particles are placed on a vector, normal at the skull, in a skull
point. The outmost of them is characterized by an elevation,
which gives the approximate thickness of the facial tissue
(known as tissue depth). The values of the depth in different
points have been computed by interpolating the values taken
from a map of skin depths of landmark points on the skull [6].

Figure 4. The three layers of the skin. Under the skin, in the right side,
some muscles are visible.

9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 328

Muscle insertions are only made in the innermost layer; a

contraction of one muscle propagates to the surface through
the intermediate layers, preventing unnatural deformations
of a very small patch of skin where the muscle insertion is
made.

VI. TOWARDS MORE REALISM
In this section we describe several improvements that can

made to our system.
One way to improve the model is adding more

(anatomically correct) details to it. The facial muscles have
been made by hand using a modeling software package. In
the present implementation, out of the over 50 muscles of a
human head, only 15 are modeled. It is obvious that the less
muscles are included in the simulation, the less accurate the
expressivity of the avatar will be. The first improvement
will be to fill in the model with the missing muscles.

To further improve the accuracy of the model, the
muscles could be created from CT scans. This would ensure
their anatomical correctness and the completeness of the
muscular system. A different approach, similar to the ones
employed in 3D facial reconstruction would be creating the
muscles based on an existing skull and a set of
anthropomorphic measurements.

Still, we should be prepared to recognize that adding so
much extra detail would increase the computational needs of
the system to the extend that the simulation will no more be
supported by a consumer level computer, as it is now.

It is straightforward to customize the 3D model to fit a
certain human face, once a skull and a muscular system are
in place. This means that the hardest step towards creating
and animating the avatar of a real person would be
importing the specific facial features of that person into the
model. This can be achieved either by 3D scans (easy to
accomplish but expensive), or by using only photos
(difficult but cheap).

In the present state the model lacks the ability to correctly
simulate the volumetric deformation of the muscle. When
we contract the muscle lengthwise, thus decreasing its
length, the volume of the muscle actually shrinks, which is
not realistic. In reality, the muscle’s width should increase to
compensate (to a certain degree) its longitudinal
deformation. We are currently working to include in the
model this aspect of the muscle dynamics.

VII. CONCLUSION
We have presented a physical system used to create real

time facial animations. The muscles and the skin are
connected, so the user must only specify different
contraction values for the muscles in order to create
different facial expressions (Fig. 5)

Figure 5. Main view of the system.

The internal structure of the skin and the muscles is
modeled. This way, contracting a muscle that is connected
to another one induces deformations in the second muscle,
although its parameters were not explicitly altered. Moving
from one animation frame to the other means computing all
the interactions between the different components of the
system. The animation is done in real time.

As a next phase on our research we intend to animate the
model through commands expressed in an emotional
language (similar to the mapping between facial expression
and muscle contractions in the FACS system [1]). This
means that muscles elongations should be put in
correspondence with types of facial expressions. This would
take the interaction with the avatar to a higher (more
abstract) level.

ACKNOWLEDGMENTS
We would like to thank to our colleague Laurentiu

Militeanu for providing the geometry for some of the
muscles and the skull.

REFERENCES
[1] Ekman Paul, Friesen V.Wallace, Hager C. Joseph, Facial Action

Coding System Investigator's Guide. A Human Face, 2002.
[2] Nedel Porcher Luciana, Thalmann Daniel, Real Time Muscle

Deformations Using Mass-Spring Systems. Swiss Federal Institute of
Technology. Proceedings of the Computer Graphics International,
1998.

[3] Kähler, K., "A Head Model with Anatomical Structure for Facial
Modeling and Animation", Master's Thesis, Available:
http://www.gamasutra.com/education/theses/20050526/Dissertation_
Kaehler.pdf

[4] Ercolessi, Furio, “The Verlet Algorithm”, A molecular dynamics
primer, Available:
http://www.fisica.uniud.it/~ercolessi/md/md/node21.html

[5] Press, William H., Teukolsky, Saul A., Vetterling, William T.,
Flannery, Brian P., chap. Integration of Ordinary Differential
Equations in Numerical Recipes in C. The Art of Scientific
Computing, second edition, Cambridge University Press, 1992, pp.
710.

http://www.gamasutra.com/education/theses/20050526/Dissertation_
http://www.fisica.uniud.it/~ercolessi/md/md/node21.html

