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Abstract—Facial expressions are very important in human 
communications. Creating them programmatically, using a 
muscle-based system, can greatly reduce the amount of time 
needed to produce an animation. The main advantage of the 
muscle approach is that the only thing that has to be done 
before starting to animate a new character is to tailor the 
muscle system to fit the new facial features. We describe a 
mass-spring system used for the physical simulation of the 
structure and dynamics of the facial muscles and the skin. 
 

Index Terms—animation, biological system modeling, 
dynamics, muscles, simulation software 

I. INTRODUCTION 
Creating realistic facial animations has always been a 

challenge in computer graphics. Traditionally, animating a 
human-like character is considered a difficult task, since it 
requires a lot of talent and modeling experience. We 
propose a muscle-based approach to the facial animation 
problem. This approach gives the animator the possibility to 
control the facial expressions of the character using the 
muscles defined in the system. The muscles are connected to 
each other, to the skin and to the skull. Their contraction 
induces the movement of the skin, thus creating facial 
expressions of the avatar.  

The goal of the project is to create a three-dimensional 
model of a human face, able to convey emotions resembling 
in detail to human-like natural expressions to the users who 
interact with it. When created, an emotional language will 
permit the translation of the parameters of the system into 
generally known emotions.  

The possible applications of such a system are countless: 
creating avatars for different interactive applications, that 
are able to read a text or carry a conversation; create 3D 
replicas of human beings and use them in teleconferencing 
(so only the audio signal and the captured parameters are 
sent through the network); create artificial tutors, that can 
teach lessons and show emotional feedback (nod their heads, 
gaze at the students, approve or disapprove their actions); 
medical applications on which to study the new look of 
expressions after facial or mandible surgeries and, of course, 
creating computer-generated characters that play a part in 
video games or movies. 

This paper focuses on the mass-spring system that we 
used as a physical framework, and on the structure and 
dynamics of the muscles and the skin. It is organized as 
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follows: the second section makes a tour among related 
work, section 3 describes the physical system underlying the 
muscles, sections 4 and 5 present the muscle and skin 
models, section 6 summarizes the main developments that 
we intend to add to the system in order to enhance its 
behavior, and the last section gives the conclusions. 

II. RELATED WORK 
There are different approaches to creating facial 

animations. They vary in the means they employ for 
obtaining the animation and in the final result. The 
explanation for such a wide variety of animation techniques 
is simple: creating state-of-the-art facial animation is 
difficult and expensive, both from an artistic and 
computational point of view. Very complex animations, 
which take into consideration accurate simulation of 
different anatomical parts of the human head usually involve 
huge computational load and could be cost prohibitive. 
Therefore, most systems are focused on a specific goal and 
they include into the model only the minimum resources that 
allow them to fulfill the goals, thus minimizing costs. 

The most widely used method for creating facial 
animations is the morphing method. It implies having a set 
of facial expressions of the model and a set of feature points. 
The animation is obtained by interpolating the positions of 
these points between one facial expression and the other.  

There is a standard for defining the facial expressions, 
called FACS (Facial Action Coding System). Paul Eckman 
developed it in 1978 [1]. FACS proposes a mapping 
between different movements and contractions of the facial 
muscles and the name of the resulting facial expression. The 
state of several muscles at a certain point in time is labeled 
as an action unit (AU). Each of these action units 
corresponds to a visible change in the facial expression of 
the model. The original system included 46 AU. An 
example is AU 26, lid tightener, created with the help of the 
Orbicularis Oris and Pars Palebralis muscles. 

Nedel and Thalmann [2] proposed a simulation system 
where the forces inside a muscle are described using the 
concept of an action line. An action line connects the origin 
of the muscle to its insertion point. The action lines follow 
the external shape of the muscle. To add volume to the 
muscle, the action lines are subsequently connected 
horizontally, using equally spaced ellipses. The resulting 
lattice is introduced into a mass-spring system, and particles 
are considered at the intersections between the action lines 
and the horizontal ellipses. To preserve the volume of the 
muscle during the contraction some extra springs are added, 
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called angular springs. For each pair of original springs, x0x1 

and x1x2, two extra springs are added: one that connects the 
ends of the original springs, x0x2, and one that connects the 
particle x1 with the middle of the x0x2 spring. The interior of the 
muscle in not modeled. 

Another muscular model was the one used by Kähler [3]. In 
his approach, a muscle is represented as a bundle of fibers, each 
with a piecewise linear polygon as a control structure. 
Geometric shapes are attached to the segments of this control 
polygon. The fibers can form sheet muscles by grouping, while 
the union of the geometric shapes attached to the segments 
represents the muscle surface. This model supports two types of 
contraction, a linear muscle contraction and a sphincter muscle 
contraction. 

III. THE PHYSICAL SYSTEM 
In order to simulate movement of the skin and the muscles in 

a physically correct manner, we need a system of objects that 
observe some clearly defined physical laws. Our choice was to 
implement a mass-spring system, that is, a system of mass 
particles connected by springs that observe Newton’s laws of 
motion and Hooke’s law of elasticity.  

Each particle in the system has an identity, a position in a 
three-dimensional space (x, y, z), a mass (m) and a velocity (v). 
The fact that the particles have identity is not directly used, but 
it implies that two particles with the same position and mass are 
actually distinct. The mass of the particles in the system is a 
parameter; at the initialization of the system, these masses as 
well as their initial positions have to be specified. The particle 
masses are computed by dividing the volume of the muscle by 
the number of particles modeling it (this assumes that all 
muscles have an uniform density). The positions of the particles 
are modified by the system during the animation, according to 
the laws of motion that take into account the velocity.  

The springs (considered ideal) are characterized by an 
elasticity constant (k), a default length (lr) and an actual length 
(l). Each spring connects exactly two particles. The elasticity 
constant and the default length are parameters of the spring; the 
actual length is computed as the distance between the two 
particles. A spring acts upon its particles with an elastic force 
proportional to the elasticity constant and the difference 
between its default and its actual length. 

Although the model allows for a particle to be free (not 
connected to any spring), in our model all particles are bound to 
one or more springs. Our model also allows two particles to be 
connected by more than one spring. 

The mass-spring system has an initial default state, as 
defined by the current position of all the particles. The system 
advances from one state to another according to the 
mathematical expressions of the physical laws that it emulates. 
The new state is usually computed using numerical integration 
methods. 

We decided to use the Verlet integrator [4], as it provides a 
good trade-off between speed and accuracy. It is a second order 
integrator, usually used in molecular dynamics simulations, 
faster than the Runge-Kutta method [5] and more accurate than 
the Euler integrator [5]. Moreover, it simplifies the process of 
introducing constraints in the movement of the particles.  

According to the Verlet integrator, the mathematical formula 
for the approximation of motion is 

 
where x is the position of the particle, t is the current time, Δt 
the quanta of time used in the iteration, and a is the acceleration 
of the particle.  

In our implementation, the advancement of the system from 
one state to another is called a tick. The actual tick is detailed in 
two steps: first, all the elastic forces, created by the springs, are 
computed. At the end of this step, for each particle, we know 
the net force of all the springs connected to that particle.  

The second step consists of computing the actual movement 
of each particle, according to the previous equation. The 
acceleration is computed using Newton's second law, as the 
ratio between the net force that acts upon the particle and the 
mass of the particle. 

The complexity of the algorithm we used is O(ns+np), where 
ns is the number of springs and np is the number of particles, so 
it is very efficient. However, in practice we would like to have 
real time simulations for systems of tens of thousands of 
particles and tens of thousands of springs. In order to achieve 
real time performance we also implemented a multithreaded 
version of the simulation engine. Running the system on a 
machine with only two processing cores got inconclusive. We 
expect, however, that moving the model on a real parallel 
machine would bring a significant drop in computational time.  

IV. MUSCLE STRUCTURE 
We are keen to the idea that the realistic movement of a 

muscle cannot be achieved unless its inner structure is 
adequately simulated. We believe that a computer program will 
reveal the subtle shades of human expression only when the 
tissues of the human face will be modeled to the last cell. Till 
then there is still a very long way. Although our model hides 
the accurate details of organic tissue structure under the spring 
model, which has distilled only the movement aspects, in itself 
the model is able to accommodate such a level of detail that 
would be added at some time in the future. 

Our muscle structure is based on two three-dimensional 
objects, created with a commercial modeling application1. The 
first one represents the surface of the muscle, in our case 
manually modeled based on anatomical references. There are 
models of human anatomy created automatically using CT 
scans2, but these are not suitable for our engine due to 
differences in the way the anatomical parts are modeled. 
However, a future adaptation of one of these more exact 
representations is not excluded. 

The second object is a three-dimensional poly-line that 
represents the contraction axis of the muscle, specified by a 
human modeler. This contraction axis is only an approximation, 
as we don't know precisely the actual orientation of the 
muscular fibers. 

The muscle structure consists of a three-dimensional particle 
lattice (particles connected by springs) that fills the inside of 
the muscle, having a featured subset of springs that are oriented 
on the direction of the muscle contraction axis.  

The generation process of this lattice starts from the poly-
line. We consider several equally spaced reference points on it; 
the distance between these points is a user-defined parameter. 
Each such point is contained in a plane that is perpendicular to 
the contraction axis. This plane intersects the surface of the 
muscle, thus generating a planar polygon. The inside of this 
polygon represents a muscle cross section that is perpendicular 
to the contraction axis in the corresponding reference point.  

We then consider the cross section with maximum area as 
the main cross section. This cross section is filled with a planar 
                                                           

1 3ds Max, 
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=5659302 

2 Zygote project, 
http://www.3dscience.com/3D_Models/Human_Anatomy/index.php 

http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=5659302
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lattice of mass particles and springs, actually a tessellation 
made of equilateral triangles with the area specified at the 
initialization. For each of the remaining cross sections, possibly 
having a different form than the main one, we build an 
analogous lattice through a bi-dimensional transformation, 
keeping constant the number of particles. Currently this 
transformation is based on radial similarity around the center of 
mass of the cross section: this means that the ratio between the 
distance from the center to a particle location and the distance 
from the center to the polygon outline is constant over all cross 
sections. Obviously, the lattices from the secondary cross 
sections are not regular anymore: the triangles become 
distorted. Yet, this approach has the advantage that the three-
dimensional lattice is not twisted, but is only squeezed (Fig. 1). 

 
Figure 1. Detail of the structure of a muscle (three consecutive cross 
sections with the main one located on the top). 
 

One can notice that the distance between the points on the 
contraction axis and the area of the equilaterals that tessellate 
the main section determines the density of the lattice. Although 
we tend to make these parameters ever smaller, in order to 
maximize the resemblance with a real muscle, the 
computational complexity stops us from modeling the muscle 
as a really dense grid. 

 
Figure 2. Detail of the structure of a muscle (cross section particles are 
connected by longitudinal springs). 
 

The final step consists in connecting all the planar lattices 
through springs. As each cross section has the same number of 
particles, a longitudinal spring links two corresponding 
particles located on consecutive cross sections (Fig. 2). The 
contraction of a muscle is achieved by decreasing the default 

lengths of these longitudinal inter-section springs. These 
springs can be considered as the basic units of the muscle; they 
are the basic force generators. 

Programmatically, the contraction of a muscle is specified by 
a value between 0 and 1, 0 being the state of complete 
relaxation (the initial state) and 1 the state of complete 
contraction, when the muscle tends to flatten completely (Fig. 
3). 

 
Figure 3. Muscle contraction (Masseter Superficial). The right muscle is 
completely relaxed; the left one is contracting. The muscle tension is 
reproduced by the lighter color 

V. SKIN STRUCTURE 
It is generally recognized that the skin is difficult to simulate 

and render realistically. Our implementation barely touches, for 
now, the challenges of skin simulation. 

Our approach is to generate the skin automatically, based on 
the geometric information provided by the skull. The skin 
geometry is realized through a web of particles, in the same 
way as the muscles have been shaped. The particle system that 
simulates the physical movements of the skin is made of 
several layers, which simulate the three layers of the anatomical 
skin: epidermis, dermis and hypodermis (Fig. 4). Three skin 
particles are placed on a vector, normal at the skull, in a skull 
point. The outmost of them is characterized by an elevation, 
which gives the approximate thickness of the facial tissue 
(known as tissue depth). The values of the depth in different 
points have been computed by interpolating the values taken 
from a map of skin depths of landmark points on the skull [6].  

 

 
Figure 4. The three layers of the skin. Under the skin, in the right side, 
some muscles are visible. 



9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008 

         328

 
Muscle insertions are only made in the innermost layer; a 

contraction of one muscle propagates to the surface through 
the intermediate layers, preventing unnatural deformations 
of a very small patch of skin where the muscle insertion is 
made.  

VI. TOWARDS MORE REALISM 
In this section we describe several improvements that can 

made to our system.  
One way to improve the model is adding more 

(anatomically correct) details to it. The facial muscles have 
been made by hand using a modeling software package. In 
the present implementation, out of the over 50 muscles of a 
human head, only 15 are modeled. It is obvious that the less 
muscles are included in the simulation, the less accurate the 
expressivity of the avatar will be. The first improvement 
will be to fill in the model with the missing muscles.  

To further improve the accuracy of the model, the 
muscles could be created from CT scans. This would ensure 
their anatomical correctness and the completeness of the 
muscular system. A different approach, similar to the ones 
employed in 3D facial reconstruction would be creating the 
muscles based on an existing skull and a set of 
anthropomorphic measurements.  

Still, we should be prepared to recognize that adding so 
much extra detail would increase the computational needs of 
the system to the extend that the simulation will no more be 
supported by a consumer level computer, as it is now. 

It is straightforward to customize the 3D model to fit a 
certain human face, once a skull and a muscular system are 
in place. This means that the hardest step towards creating 
and animating the avatar of a real person would be 
importing the specific facial features of that person into the 
model. This can be achieved either by 3D scans (easy to 
accomplish but expensive), or by using only photos 
(difficult but cheap). 
 

In the present state the model lacks the ability to correctly 
simulate the volumetric deformation of the muscle. When 
we contract the muscle lengthwise, thus decreasing its 
length, the volume of the muscle actually shrinks, which is 
not realistic. In reality, the muscle’s width should increase to 
compensate (to a certain degree) its longitudinal 
deformation. We are currently working to include in the 
model this aspect of the muscle dynamics. 

VII. CONCLUSION 
We have presented a physical system used to create real 

time facial animations. The muscles and the skin are 
connected, so the user must only specify different 
contraction values for the muscles in order to create 
different facial expressions (Fig. 5) 

 

 
Figure 5. Main view of the system. 
 

The internal structure of the skin and the muscles is 
modeled. This way, contracting a muscle that is connected 
to another one induces deformations in the second muscle, 
although its parameters were not explicitly altered. Moving 
from one animation frame to the other means computing all 
the interactions between the different components of the 
system. The animation is done in real time. 

As a next phase on our research we intend to animate the 
model through commands expressed in an emotional 
language (similar to the mapping between facial expression 
and muscle contractions in the FACS system [1]). This 
means that muscles elongations should be put in 
correspondence with types of facial expressions. This would 
take the interaction with the avatar to a higher (more 
abstract) level. 
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